| 注册
首页|期刊导航|北京师范大学学报(自然科学版)|融合特征协同筛选与时序深度学习的棉花期货价格预测方法

融合特征协同筛选与时序深度学习的棉花期货价格预测方法

王俊 王有钰 马丁惠子 冯思豪 熊杰

北京师范大学学报(自然科学版)2025,Vol.61Issue(6):805-814,10.
北京师范大学学报(自然科学版)2025,Vol.61Issue(6):805-814,10.DOI:10.12202/j.0476-0301.2025140

融合特征协同筛选与时序深度学习的棉花期货价格预测方法

A cotton futures price prediction method integrating feature synergistic selection with temporal deep learning

王俊 1王有钰 2马丁惠子 2冯思豪 2熊杰1

作者信息

  • 1. 西南财经大学管理科学与工程学院,四川成都||人工智能与数字金融四川省重点实验室,四川成都
  • 2. 西南财经大学管理科学与工程学院,四川成都
  • 折叠

摘要

Abstract

Accurately predicting cotton futures prices is challenging due to difficulties in fusing multi-source heterogeneous data with inefficiency in feature extraction.To address this,a multimodal data fusion framework driven by a feature co-selection mechanism and a bidirectional long short-term memory(BLSTM)network is proposed.This framework integrates multi-source information,including futures market indicators,remote sensing image features,and investor sentiment derived from textual data.The feature co-selection mechanism facilitates hierarchical dimensionality reduction,while BLSTM captures nonlinear temporal dependencies.Our experiments validate the effectiveness of multi-source data fusion in elucidating complex drivers of price fluctuations.Our method significantly enhances prediction accuracy,reducing the root mean square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and normalized root mean square error(NRMSE)by 49.11%,56.16%,11.21%,and 14.47%,respectively,compared to a BLSTM model trained on non-integrated data.Feature analysis reveals that historical futures prices,market sentiment indices,and remote sensing vegetation features all contribute to the prediction.The present work offers novel insights regarding analysis of agricultural financial derivatives,also provides empirical reference for applications of multimodal data in financial modeling.

关键词

棉花期货价格预测/多源异构数据/多模态数据融合/特征协同筛选/双向长短期记忆网络

Key words

cotton futures price prediction/multi-source heterogeneous data/multimodal data fusion/feature co-selection/bidirectional long short-term memory

分类

管理科学

引用本文复制引用

王俊,王有钰,马丁惠子,冯思豪,熊杰..融合特征协同筛选与时序深度学习的棉花期货价格预测方法[J].北京师范大学学报(自然科学版),2025,61(6):805-814,10.

基金项目

国家自然科学基金资助项目(72471197) (72471197)

四川省哲学社会科学基金资助项目(SCJJ25ND091) (SCJJ25ND091)

北京师范大学学报(自然科学版)

OA北大核心

0476-0301

访问量0
|
下载量0
段落导航相关论文