| 注册
首页|期刊导航|磁共振成像|卷积神经网络与Vision Transformer在胶质瘤中的研究进展

卷积神经网络与Vision Transformer在胶质瘤中的研究进展

杨浩辉 徐涛 王伟 安良良 敖用芳 朱家宝

磁共振成像2026,Vol.17Issue(1):168-174,7.
磁共振成像2026,Vol.17Issue(1):168-174,7.DOI:10.12015/issn.1674-8034.2026.01.026

卷积神经网络与Vision Transformer在胶质瘤中的研究进展

Research progress of convolutional neural network and vision transformer in gliomas

杨浩辉 1徐涛 2王伟 3安良良 4敖用芳 5朱家宝6

作者信息

  • 1. 长治医学院,长治 046000||山西医科大学附属运城市中心医院神经外科,运城 044000
  • 2. 山西医科大学附属运城市中心医院病理科,运城 044000
  • 3. 山西医科大学附属运城市中心医院放疗科,运城 044000
  • 4. 山西医科大学附属运城市中心医院超声科,运城 044000
  • 5. 贵州省第三人民医院急诊医学科,贵阳 550001
  • 6. 山西医科大学附属运城市中心医院神经外科,运城 044000
  • 折叠

摘要

Abstract

Gliomas pose significant challenges to traditional diagnosis and treatment due to their high heterogeneity,strong invasiveness,and poor prognosis.The introduction of deep learning(DL)technology has opened up a new avenue for their precise diagnosis and treatment,among which convolutional neural network(CNN)and Vision Transformer(ViT)are core tools.CNN inherently excels in local feature extraction(e.g.,tumor edges,texture details)through hierarchical convolution operations,while ViT stands out in global context modeling(e.g.,cross-regional heterogeneity of tumors,multimodal correlations)based on the self-attention mechanism.The fusion strategy of CNN and ViT integrates local fine-grained features with global associated information,demonstrating remarkable advantages in addressing clinical dilemmas such as blurred glioma boundaries and cross-modal data heterogeneity.This article reviews the research progress of CNN and ViT in key clinical tasks of gliomas,including detection and segmentation,pathological grading,molecular subtyping,and prognosis assessment.It elaborates on their principles,individual applications,and fusion strategies.Furthermore,it discusses the prevailing challenges in the field,such as the heavy reliance on annotated data and insufficient model interpretability,and outlines promising future research directions,including the development of lightweight architectures,the advancement of self-supervised learning paradigms,and the promotion of multi-omics integration.This review thereby provides a systematic reference for the intelligent diagnosis of gliomas.

关键词

胶质瘤/深度学习/卷积神经网络/Vision Transformer/磁共振成像

Key words

glioma/deep learning/convolutional neural network/vision transformer/magnetic resonance imaging

分类

医药卫生

引用本文复制引用

杨浩辉,徐涛,王伟,安良良,敖用芳,朱家宝..卷积神经网络与Vision Transformer在胶质瘤中的研究进展[J].磁共振成像,2026,17(1):168-174,7.

基金项目

Scientific Research Project of Shanxi Provincial Health Commission(No.2021017). 山西省卫生健康委员会科研项目(编号:2021017) (No.2021017)

磁共振成像

1674-8034

访问量0
|
下载量0
段落导航相关论文