| 注册
首页|期刊导航|测控技术|基于SHHO-SVR算法的锂电池剩余使用寿命预测

基于SHHO-SVR算法的锂电池剩余使用寿命预测

冯雅馨 金辉 葛红娟 王天宇 颜柏城

测控技术2026,Vol.45Issue(1):31-36,51,7.
测控技术2026,Vol.45Issue(1):31-36,51,7.DOI:10.19708/j.ckjs.2025.12.264

基于SHHO-SVR算法的锂电池剩余使用寿命预测

RUL Prediction of Lithium-Ion Batteries Based on SHHO-SVR Algorithm

冯雅馨 1金辉 1葛红娟 1王天宇 1颜柏城1

作者信息

  • 1. 南京航空航天大学民航学院,江苏 南京 211106
  • 折叠

摘要

Abstract

Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries is essential for ensu-ring the safety of aircraft,where these batteries are widely used for their superior performance.Support vector regression(SVR)is widely applied to RUL prediction,but its performance is highly sensitive to parameter set-tings.Therefore,optimization algorithms are often introduced for parameter tuning.The commonly used Harris hawks optimization(HHO)algorithm suffers from a tendency to fall into local optima,limiting its effectiveness.To address this issue,a sparrow Harris hawks optimization(SHHO)algorithm is proposed.SHHO incorporates Skew Tent chaotic mapping,the sparrow search algorithm(SSA),multi-elite guidance,and a greedy strategy to improve global search ability and convergence accuracy.Experiments on 19 benchmark functions and the NASA lithium-ion battery dataset demonstrate that SHHO achieves better convergence and avoids local optima more effectively.The SHHO-SVR algorithm provides more accurate RUL predictions,the root mean square er-ror(RMSE)is reduced by more than 50%on average,and the prediction of the end-of-life point is more accu-rate.

关键词

锂离子电池/剩余使用寿命预测/哈里斯鹰优化算法/支持向量回归/麻雀搜索算法

Key words

lithium-ion batteries/RUL prediction/HHO algorithm/SVR/SSA

分类

信息技术与安全科学

引用本文复制引用

冯雅馨,金辉,葛红娟,王天宇,颜柏城..基于SHHO-SVR算法的锂电池剩余使用寿命预测[J].测控技术,2026,45(1):31-36,51,7.

基金项目

国家自然科学基金民航联合基金(U2233205,U2133203) (U2233205,U2133203)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文