| 注册
首页|期刊导航|测控技术|基于GAN数据增强在航空旋转部件缺陷检测中的应用

基于GAN数据增强在航空旋转部件缺陷检测中的应用

夏巍 王燕山 李广元 贾晨枫

测控技术2026,Vol.45Issue(1):37-44,8.
测控技术2026,Vol.45Issue(1):37-44,8.DOI:10.19708/j.ckjs.2026.01.005

基于GAN数据增强在航空旋转部件缺陷检测中的应用

Application of GAN Data Augmentation in Defect Detection of Aircraft Rotating Components

夏巍 1王燕山 1李广元 1贾晨枫1

作者信息

  • 1. 北京长城航空测控技术研究所有限公司,北京 101111||自动化测试创新中心,北京 101111
  • 折叠

摘要

Abstract

A defect sample generation method based on the"repair-generation"mechanism is proposed to ad-dress the problem of insufficient and imbalanced defect samples in aviation rotating components.The large mask inpainting(LaMa)model is utilized to perform semantic completion on the original defect images,defect repair image pairs with consistent structures is constructed to enhance the expression consistency of the training samples.At the same time,a mask-guided spatial-frequency feature fusion generative adversarial network(Mask-FFTGAN)is designed to improve the modeling ability of the model for the morphology,boundaries,and local structure of defect areas.The loss function combines conditional adversarial loss and pixel reconstruction loss to achieve balance between the image realism and structural consistency.Experiments on the AeBAD-S dataset show that this method achieves a minimum Fréchet inception distance(FID)value of 10.22 and a learned perceptual image patch similarity(LPIPS)value of less than 0.1 in the task of generating local defect regions.In the defect detection task,the average precision,recall,and F1 score are improved by 10.2%,8.6%,and 9.3%,respectively,through data augmentation.The results show that this method can effectively al-leviate the problem of insufficient samples,improve downstream detection performance,and provide a feasible solution for the generation and enhancement of high-quality defect images in the industrial field.

关键词

航空发动机叶片检测/小样本/生成对抗网络/数据增强

Key words

aircraft engine blade inspection/few-shot/GAN/data augmentation

分类

信息技术与安全科学

引用本文复制引用

夏巍,王燕山,李广元,贾晨枫..基于GAN数据增强在航空旋转部件缺陷检测中的应用[J].测控技术,2026,45(1):37-44,8.

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文