| 注册
首页|期刊导航|大地测量与地球动力学|基于集成学习Stacking算法的南极热流预测模型

基于集成学习Stacking算法的南极热流预测模型

蔡轶珩 张晓晴 稂时楠 崔祥斌 何彦良 张恒

大地测量与地球动力学2026,Vol.46Issue(1):55-62,85,9.
大地测量与地球动力学2026,Vol.46Issue(1):55-62,85,9.DOI:10.14075/j.jgg.2025.02.038

基于集成学习Stacking算法的南极热流预测模型

Antarctic Heat Flow Prediction Model Based on Stacking Algorithm for Ensemble Learning

蔡轶珩 1张晓晴 1稂时楠 1崔祥斌 2何彦良 1张恒1

作者信息

  • 1. 北京工业大学信息科学技术学院,北京,100124
  • 2. 中国极地研究中心,上海,200136
  • 折叠

摘要

Abstract

Heat flow(HF)refers to the heat energy transmitted from the Earth's interior to the sur-face.It can reveal various processes occurring in the deep Earth and information about energy balance.In the Antarctic region,understanding heat flow is of great significance for simulating the dynamic changes of ice sheets.This study employs the Stacking algorithm in machine learning to construct a heat flow prediction model for Antarctica.The model integrates 13 types of geological and geophysical features related to heat flow as observational input data and incorporates six machine learning algo-rithms commonly used for regression prediction problems,namely GBDT,XGBoost,RF,LightG-BM,ET,and MLP,to predict the distribution characteristics of heat flow.The experimental results show that the prediction accuracy of the Stacking model is superior to that of several benchmark mod-els.The new Antarctic heat flow distribution prediction map obtained through this model is more in line with the actual distribution of heat flow in Antarctica compared with the large-scale estimated heat flow distribution maps drawn by traditional methods,demonstrating more excellent performance.

关键词

集成学习/Stacking算法/大地热流/南极洲

Key words

ensemble learning/Stacking algorithm/heat flow/Antarctica

分类

天文与地球科学

引用本文复制引用

蔡轶珩,张晓晴,稂时楠,崔祥斌,何彦良,张恒..基于集成学习Stacking算法的南极热流预测模型[J].大地测量与地球动力学,2026,46(1):55-62,85,9.

基金项目

国家自然科学基金(42376253,42576289) (42376253,42576289)

国家重点研发计划(2024YFB3908003). (2024YFB3908003)

大地测量与地球动力学

1671-5942

访问量0
|
下载量0
段落导航相关论文