| 注册
首页|期刊导航|电测与仪表|基于时频域融合与置信度增强模型的复杂电能质量扰动分类方法

基于时频域融合与置信度增强模型的复杂电能质量扰动分类方法

许慧燕 余子文 洪典 李建闽

电测与仪表2026,Vol.63Issue(1):72-82,11.
电测与仪表2026,Vol.63Issue(1):72-82,11.DOI:10.19753/j.issn1001-1390.2026.01.008

基于时频域融合与置信度增强模型的复杂电能质量扰动分类方法

A complex power quality disturbance classification method based on time-frequency domain fusion and confidence enhancement model

许慧燕 1余子文 2洪典 3李建闽4

作者信息

  • 1. 湖南涉外经济学院 信息科学与工程学院,长沙 410205||湖南师范大学 信息科学与工程学院,长沙 410081
  • 2. 布里斯托大学 工程数学与技术学院,英国 布里斯托尔 BS8 1TH
  • 3. 湖南师范大学 信息科学与工程学院,长沙 410081
  • 4. 湖南师范大学 工程与设计学院,长沙 410081
  • 折叠

摘要

Abstract

Traditional power quality disturbance(PQD)classification methods often rely on a limited set of disturb-ance types for training,making it challenging to accurately identify previously unseen complex and multiple disturb-ance types.To address this issue,this paper proposes a novel PQD classification method based on time-frequency domain fusion and confidence enhancement model.Firstly,the PQD signal is transformed using the fast Fourier transform to obtain its spectral information.Then,a temporal convolutional network and a convolutional neural net-work are employed to extract features from the time and frequency domains,respectively.The extracted features are fused to enhance the overall feature representation.Within a multi-label learning framework,class labels are intro-duced to differentiate between single and multiple disturbance types,and confidence scores are predicted to deter-mine the presence of each disturbance label.Finally,to further improve the ability of model to identify unseen mul-tiple disturbance types,a label enhancement factor is designed to optimize the confidence distribution for multiple disturbances without affecting the recognition performance of known PQD types.Simulation results show that the proposed method achieves an identification accuracy of over 96.75%for multiple disturbance types not included in the training set,even when trained only on single and dual disturbance samples.In real-world tests,the method maintains a recognition rate above 91.67%for unknown disturbance types,demonstrating strong generalization ca-pabilities.The proposed method offers high application value in real-world scenarios where power grid operating conditions are variable and disturbance patterns are complex and superimposed.

关键词

电能质量扰动/时频域融合/标签增强因子/多标签学习

Key words

power quality disturbance/time-frequency domain fusion/label enhancement factor/multi-label learning

分类

信息技术与安全科学

引用本文复制引用

许慧燕,余子文,洪典,李建闽..基于时频域融合与置信度增强模型的复杂电能质量扰动分类方法[J].电测与仪表,2026,63(1):72-82,11.

基金项目

国家自然科学基金资助项目(51907062) (51907062)

湖南省自然科学基金资助项目(2021JJ40354) (2021JJ40354)

电测与仪表

1001-1390

访问量0
|
下载量0
段落导航相关论文