| 注册
首页|期刊导航|电气传动|注意力机制驱动的多源数据融合配网估计

注意力机制驱动的多源数据融合配网估计

邱桂华 汤志锐 陈宇婷

电气传动2026,Vol.56Issue(1):67-74,8.
电气传动2026,Vol.56Issue(1):67-74,8.DOI:10.19457/j.1001-2095.dqcd26514

注意力机制驱动的多源数据融合配网估计

Distribution Network Estimation Driven By Attention Mechanism for Multi-source Data Fusion

邱桂华 1汤志锐 1陈宇婷1

作者信息

  • 1. 南方电网广东佛山供电局,广东 佛山 528000
  • 折叠

摘要

Abstract

Aiming at the challenges of data heterogeneity and multi-source in distribution networks,a self-supervised multi-source measurement data fusion method based on coding-decoding attention mechanism was proposed.This method automatically captured the correlation between data through self-supervised learning,and extracted weighted fusion features by encoding and decoding attention mechanisms to enhance the relevance,integrity and availability of data.This method can adapt to different types of input data,thus ensuring the realization of high-precision distribution network state estimation in multi-source data scenarios.Experimental results on a 57-node simulation system show that the proposed method outperforms mainstream algorithms such as GraphMDN,RetNode,AdaAtt and DR-GCN in terms of accuracy,AUC and Macro_F value.Among them,the accuracy reached 88%,the AUC increased to 76.05%,the Macro_F value reached 93.02%,and the overall performance was significantly improved.Compared with the optimal comparison algorithm,the average error is reduced by 47%,and the maximum error is controlled within 0.017.The results verify the effectiveness and generalization ability of the proposed method in multi-source fusion,power grid data modeling and state estimation.

关键词

多源数据融合/编码-解码注意力/自监督学习/配网状态估计

Key words

multi-source data fusion/encoding-decoding attention/self-supervised learning/distribution network state estimation

分类

信息技术与安全科学

引用本文复制引用

邱桂华,汤志锐,陈宇婷..注意力机制驱动的多源数据融合配网估计[J].电气传动,2026,56(1):67-74,8.

基金项目

南方电网公司科技项目(GDKJXM20240450) (GDKJXM20240450)

电气传动

1001-2095

访问量0
|
下载量0
段落导航相关论文