| 注册
首页|期刊导航|福建冶金|基于机器学习的钢铁企业铁水温降预测模型研究

基于机器学习的钢铁企业铁水温降预测模型研究

郭凌宙 郑芳

福建冶金2026,Vol.55Issue(1):17-20,4.
福建冶金2026,Vol.55Issue(1):17-20,4.

基于机器学习的钢铁企业铁水温降预测模型研究

Research and Exploration of Artificial Intelligence in the Prediction of Iron Temperature Drop in Steel Enterprises

郭凌宙 1郑芳2

作者信息

  • 1. 福建三钢闽光股份有限公司,福建 三明 365000
  • 2. 福建省三钢资环科技有限公司,福建 三明 365000
  • 折叠

摘要

Abstract

Artificial intelligence technology is constantly developing and its application in metallurgical enterprises is gradually deepening,becoming an important cornerstone for intelligent manufacturing and digital transformation.The temperature drop of molten iron is a key parameter in the steelmaking process,which directly affects the thermal efficiency of steelmaking and also indirectly affects the product quality.By integrating production big data and machine learning technology(XGBoost/neural network),the end-to-end temperature drop prediction model constructed in this study,after feature engineering optimization,realizes dynamic process control,increasing the smelting efficiency by 5%,the product qualification rate by 3%,and reducing energy consumption by 2%.This model optimizes the production process,reduces production costs,and provides an effective means for the intelligent manufacturing of steel enterprises.

关键词

铁水温降/机器学习/XGBoost/实时预测/智能制造

Key words

iron temperature drop/machine learning/XGBoost/real-time prediction/intelligent manufacturing

引用本文复制引用

郭凌宙,郑芳..基于机器学习的钢铁企业铁水温降预测模型研究[J].福建冶金,2026,55(1):17-20,4.

福建冶金

1672-7665

访问量0
|
下载量0
段落导航相关论文