| 注册
首页|期刊导航|节能|基于机器学习算法的纳米流体强化型深井地源热泵的性能预测

基于机器学习算法的纳米流体强化型深井地源热泵的性能预测

任彦洁 任国杰 王日藩 辛齐 马玖辰

节能2025,Vol.44Issue(12):27-31,5.
节能2025,Vol.44Issue(12):27-31,5.DOI:10.3969/j.issn.1004-7948.2025.12.007

基于机器学习算法的纳米流体强化型深井地源热泵的性能预测

Performance prediction of nanofluid-enhanced deep well ground source heat pump based on machine learning algorithms

任彦洁 1任国杰 1王日藩 1辛齐 1马玖辰2

作者信息

  • 1. 中铁建设集团有限公司,北京 100043
  • 2. 天津城建大学能源与安全工程学院,天津 300384
  • 折叠

摘要

Abstract

To explore the applicability of different machine learning algorithms in the performance prediction of deep well ground source heat pumps with enhanced heat transfer using nano-fluids as circulating fluids,the operation data of the heat pump system using 2%Al2O3 nano-fluids are monitored and collected in real time,and then a database is constructed.And calculation and analysis are carried out respectively by using algorithms such as support vector machine(SVM),particle swarm optimization-support vector machine(PSO-SVM),and extreme gradient boost(XGBoost).The results show that the XGBoost algorithm has excellent predictive performance.Its prediction of system coefficient of performance(COP)and heat supply(Q)has a fitting degree of 100%within an error range of±5%.This result fully demonstrates that the algorithm has high fitting accuracy and no obvious overfitting phenomenon occurs.

关键词

机器学习/纳米流体/深井地源热泵/性能预测

Key words

machine learning/nanofluid/deep well ground source heat pump/performance prediction

分类

信息技术与安全科学

引用本文复制引用

任彦洁,任国杰,王日藩,辛齐,马玖辰..基于机器学习算法的纳米流体强化型深井地源热泵的性能预测[J].节能,2025,44(12):27-31,5.

基金项目

天津市自然科学基金企业科技特派员项目(项目编号:19JCTPJC48100) (项目编号:19JCTPJC48100)

中铁建设集团有限公司科研计划课题项目(项目编号:LX24-33C) (项目编号:LX24-33C)

中铁建设集团有限公司科研计划课题华北-天津项目(项目编号:7287QT2024003) (项目编号:7287QT2024003)

节能

1004-7948

访问量0
|
下载量0
段落导航相关论文