井冈山大学学报(自然科学版)2026,Vol.47Issue(1):10-22,13.DOI:10.3969/j.issn.1674-8085.2026.01.002
一类具有不同来源分布的激活-抑制剂模型的分支分析
Bifurcation analysis of a class of activator-inhibitor models with different source
摘要
Abstract
The bifurcation phenomena of the system for u=0,s=T=2,r=3 in the Gierer-Meinhardt model is considered,under the assumption of different source and without the diffusion effects.First,the number and properties of the positive equilibria in the system is analyzed.Finally,the bifurcation behavior near the positive equilibria is discussed and it demonstrates that the system undergoes saddle-node bifurcation,Bogdanov-Takens bifurcation of codimension-3 under some parameter conditions,and the system occurs a supercritical Hopf bifurcation and undergoes a stable limit cycle at E01.关键词
Gierer-Meinhardt模型/鞍结点分支/Hopf分支/Bogdanov-Takens分支Key words
Gierer-Meinhardt model/saddle-node bifurcation/Hopf bifurcation/Bogdanov-Takens bifurcation分类
数理科学引用本文复制引用
贺孝英,吴奎霖..一类具有不同来源分布的激活-抑制剂模型的分支分析[J].井冈山大学学报(自然科学版),2026,47(1):10-22,13.基金项目
国家自然科学基金项目(12361034) (12361034)
贵州省科技计划项目(黔科合基础-ZK[2022]一般118) (黔科合基础-ZK[2022]一般118)