| 注册
首页|期刊导航|井冈山大学学报(自然科学版)|基于改进DeepLabV3+网络的黄瓜叶片病斑分割算法

基于改进DeepLabV3+网络的黄瓜叶片病斑分割算法

唐卫东 陈冠华 谭显明 刘灵辉 刘秋明

井冈山大学学报(自然科学版)2026,Vol.47Issue(1):68-78,11.
井冈山大学学报(自然科学版)2026,Vol.47Issue(1):68-78,11.DOI:10.3969/j.issn.1674-8085.2026.01.009

基于改进DeepLabV3+网络的黄瓜叶片病斑分割算法

Cucumber leaf spot segmentation method based on improved DeepLabV3+

唐卫东 1陈冠华 2谭显明 1刘灵辉 2刘秋明3

作者信息

  • 1. 井冈山大学电子与信息工程学院,江西,吉安 343009
  • 2. 井冈山大学电子与信息工程学院,江西,吉安 343009||江西理工大学软件工程学院,江西,南昌 330013
  • 3. 江西理工大学软件工程学院,江西,南昌 330013
  • 折叠

摘要

Abstract

Leaf spot disease is a major factor affecting the quality and yield of the crops such as cucumbers.Accurate segmentation of leaf spots is crucial for precise identification of the diseases and providing farmers with scientific strategies for disease control.Due to the blurred edges and reflective characteristics of leaf spots,existing methods often fail to achieve ideal segmentation results.To address this issue,a cucumber leaf spot segmentation algorithm based on an improved DeepLabV3+network is proposed.First,the original Xception backbone network is replaced with the more lightweight MobileNetV2 network.Secondly,the DenseNet concept is applied to the Atrous Spatial Pyramid Pooling(ASPP)structure,resulting in a DenseASPP(dilated spatial pyramid pooling based on dense connections),which enhances the segmentation performance for multi-scale targets by increasing the receptive field of the network.Additionally,a SENet channel attention mechanism is introduced after DenseASPP to improve the model's feature representation capabilities.Finally,the feature maps extracted by different stages of the backbone network are concatenated with the deep-level feature maps to fully utilize the information contained in the feature maps at each stage.The model was tested and trained on a cucumber leaf disease dataset.The results show that the algorithm achieves 90.55%sensitivity,98.03%specificity,85.43%dice coefficient,and 97.31%accuracy.The segmentation accuracy is significantly higher than that of other mainstream methods,with good generalization ability.This algorithm is applicable to leaf spot segmentation for different crops and can provide valuable reference for crop disease prevention and control.

关键词

图像分割/DeepLabV3+/密集连接/注意力机制

Key words

image segmentation/DeepLabV3+/dense connection/attention mechanism

分类

信息技术与安全科学

引用本文复制引用

唐卫东,陈冠华,谭显明,刘灵辉,刘秋明..基于改进DeepLabV3+网络的黄瓜叶片病斑分割算法[J].井冈山大学学报(自然科学版),2026,47(1):68-78,11.

基金项目

国家自然科学基金项目(31860574) (31860574)

江西省自然科学基金项目(20224BAB205025) (20224BAB205025)

井冈山大学学报(自然科学版)

1674-8085

访问量0
|
下载量0
段落导航相关论文