| 注册
首页|期刊导航|常州大学学报(自然科学版)|基于改进强化学习的移动机器人最短路径寻找方法

基于改进强化学习的移动机器人最短路径寻找方法

柴泽 高志鹏

常州大学学报(自然科学版)2026,Vol.38Issue(1):57-65,9.
常州大学学报(自然科学版)2026,Vol.38Issue(1):57-65,9.DOI:10.3969/j.issn.2095-0411.2026.01.007

基于改进强化学习的移动机器人最短路径寻找方法

A shortest path finding method for mobile robots based on improved reinforcement learning

柴泽 1高志鹏2

作者信息

  • 1. 北京邮电大学 计算机学院(国家示范性软件学院),北京 100876
  • 2. 网络与交换技术国家重点实验室(北京邮电大学),北京 100876
  • 折叠

摘要

Abstract

Path planning is a pivotal concern in mobile robotics,with effective planning significantly enhancing the operational efficiency of robots.The crux of the issue lies in accelerating the environ-mental exploration speed of mobile robots and identifying the shortest possible path.Current rein-forcement learning-based methods for shortest path discovery suffer from slow update speeds,resul-ting in excessive time spent on initialization and data iteration,particularly in smaller models.To address this,a novel method for shortest path discovery in mobile robots were proposed,leveraging reinforce-ment learning.Given the unique characteristics of unknown environments,the grid method was adap-ted and a strategy that simultaneously explores,interacts,and models was implemented.Further-more,a back tracking update strategy into traditional Q-learning to expedite convergence speed was incorporated.The experimental results demonstrate that when the ε-greedy algorithm and normaliza-tion methods are employed as update strategies,the proposed method significantly reduces the train-ing time required for robot pathfinding,while also enhancing training accuracy.The efficacy and ad-vantages of the proposed scheme are further validated by simulation results.

关键词

强化学习/Q学习/栅格法/智能机器人/路径规划

Key words

reinforcement learning/Q-learning/grid method/intelligent robot/path planning

分类

信息技术与安全科学

引用本文复制引用

柴泽,高志鹏..基于改进强化学习的移动机器人最短路径寻找方法[J].常州大学学报(自然科学版),2026,38(1):57-65,9.

基金项目

国家自然科学基金资助项目(62072049) (62072049)

北京市自然科学基金资助项目(4232029). (4232029)

常州大学学报(自然科学版)

2095-0411

访问量0
|
下载量0
段落导航相关论文