| 注册
首页|期刊导航|福建电脑|改进LSTM框架的股票预测系统研究

改进LSTM框架的股票预测系统研究

吴悠

福建电脑2026,Vol.42Issue(1):1-6,6.
福建电脑2026,Vol.42Issue(1):1-6,6.DOI:10.16707/j.cnki.fjpc.2026.01.001

改进LSTM框架的股票预测系统研究

Research on Stock Prediction System Based on Improved LSTM Algorithm

吴悠1

作者信息

  • 1. 福建理工大学计算机科学与数学学院 福州 350118
  • 折叠

摘要

Abstract

Addressing the issues of unidirectional modeling bias,noise sensitivity,and vanishing gradients in LSTM for stock prediction,this paper proposes an improved model that integrates bidirectional LSTM,multi-head attention mechanism,and residual connections.This model utilizes bidirectional LSTM to extract historical and future information,enhances key time steps through the attention mechanism,and ensures the stability of deep network training through residual connections.Experiments based on data from 30 A-shares from 2018 to 2025 show that the mean squared error of the improved model is 0.00016,a reduction of 91%compared to the traditional LSTM(0.00185);the annualized return rate of real-time backtesting reaches 32%,significantly outperforming the benchmark strategy.This study provides an effective solution for financial time series prediction.

关键词

长短期记忆模型/注意力机制/残差连接/股票预测

Key words

Long Short-Term Memory/Attention Mechanism/Residual Connection/Stock Prediction

分类

信息技术与安全科学

引用本文复制引用

吴悠..改进LSTM框架的股票预测系统研究[J].福建电脑,2026,42(1):1-6,6.

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文