| 注册
首页|期刊导航|工矿自动化|基于CNN-LSTM-SAtt的液压支架销轴传感器负载误差预测

基于CNN-LSTM-SAtt的液压支架销轴传感器负载误差预测

姜伟 张硕 陈井龙 肖永惠 王书文 梅鑫 王俊卓

工矿自动化2025,Vol.51Issue(12):36-44,9.
工矿自动化2025,Vol.51Issue(12):36-44,9.DOI:10.13272/j.issn.1671-251x.2025070068

基于CNN-LSTM-SAtt的液压支架销轴传感器负载误差预测

Prediction of load error of hydraulic support pin shaft sensor based on CNN-LSTM-SAtt

姜伟 1张硕 2陈井龙 1肖永惠 2王书文 3梅鑫 2王俊卓1

作者信息

  • 1. 中煤北京煤矿机械有限责任公司,北京 102400
  • 2. 辽宁大学物理学院,辽宁沈阳 110036
  • 3. 中国中煤能源集团有限公司,北京 100120
  • 折叠

摘要

Abstract

Under severe strata pressure,the output signals of hydraulic support pin shaft sensors exhibit strong nonstationarity and time-varying characteristics.A single neural network architecture is unable to simultaneously account for multiscale spatial feature extraction and long-term temporal dependency modeling,and it lacks an adaptive weight allocation mechanism during multiscale feature fusion,which limits the generalization performance of error prediction models.To address these issues,a hybrid neural network CNN-LSTM-SAtt that integrated a Convolutional Neural Network(CNN),a Long Short-Term Memory Network(LSTM),and a self-attention mechanism(SAtt)was proposed and was applied to load error prediction of hydraulic support pin shaft sensors.First,a combined method of Variational Mode Decomposition(VMD),Fast Fourier Transform(FFT),and Hilbert Transform(HT)(VMD-FFT-HT)was adopted to construct multidomain features.Then,CNN was used to extract deep spatial morphological features in the frequency domain and time-frequency domain,while LSTM was employed to capture the long-term temporal evolution patterns of time-domain signals.Finally,SAtt was introduced to dynamically assign weights to multidomain features according to signal fluctuation characteristics,thereby establishing a high-precision nonlinear mapping between the sensor load response signal and the excitation signal.The results of five typical loading experiments of pin shaft sensors conducted using a force standard machine indicated that the predicted values of the CNN-LSTM-SAtt model can effectively correct the error components in the load response signals of pin shaft sensors.Compared with traditional models and single neural network models,this model exhibits significant advantages in both prediction accuracy and generalization capability,enabling effective prediction of load errors of hydraulic support pin shaft sensors under complex working conditions.

关键词

液压支架/销轴传感器/误差预测/CNN/LSTM/自注意力机制/特征提取/特征融合

Key words

hydraulic support/pin shaft sensor/error prediction/CNN/LSTM/self-attention mechanism/feature extraction/feature fusion

分类

矿业与冶金

引用本文复制引用

姜伟,张硕,陈井龙,肖永惠,王书文,梅鑫,王俊卓..基于CNN-LSTM-SAtt的液压支架销轴传感器负载误差预测[J].工矿自动化,2025,51(12):36-44,9.

基金项目

国家重点研发计划资助项目(2022YFC3004605) (2022YFC3004605)

国家自然科学基金区域创新发展联合基金(辽宁)项目(U1908222) (辽宁)

中煤集团重大科技专项项目(20211BY001). (20211BY001)

工矿自动化

OA北大核心

1671-251X

访问量0
|
下载量0
段落导航相关论文