| 注册
首页|期刊导航|工矿自动化|基于PSO-BP的瓦斯抽采钻孔负压智能调控方法

基于PSO-BP的瓦斯抽采钻孔负压智能调控方法

高涵 周爱桃 成小雨 程成 王东旭

工矿自动化2025,Vol.51Issue(12):72-79,8.
工矿自动化2025,Vol.51Issue(12):72-79,8.DOI:10.13272/j.issn.1671-251x.2025090111

基于PSO-BP的瓦斯抽采钻孔负压智能调控方法

Intelligent control method for negative pressure of gas extraction boreholes based on PSO-BP

高涵 1周爱桃 2成小雨 3程成 3王东旭2

作者信息

  • 1. 煤炭无人化开采数智技术全国重点实验室,北京 100120||中煤能源研究院有限责任公司,陕西西安 710054||中煤西安设计工程有限责任公司,陕西西安 710054||陕西省"四主体一联合"煤矿智能管控系统及防灾装备校企联合研究中心,陕西西安 710054
  • 2. 中国矿业大学(北京)应急管理与安全工程学院,北京 100083
  • 3. 煤炭无人化开采数智技术全国重点实验室,北京 100120||中煤能源研究院有限责任公司,陕西西安 710054||中煤西安设计工程有限责任公司,陕西西安 710054
  • 折叠

摘要

Abstract

Existing control methods for negative pressure of gas extraction boreholes exhibit delayed responses to changing operating conditions and lack adaptive capability and dynamic feedback control,making it difficult to achieve precise control of borehole negative pressure.To address these problems,an intelligent control method for negative pressure in gas extraction boreholes based on Particle Swarm Optimization(PSO)and Back Propagation(BP)was proposed.A coal seam gas-air migration model was derived,and on this basis,COMSOL numerical simulation software was used to obtain gas extraction datasets under different extraction conditions.A PSO algorithm was introduced to optimize the initial weights of the BP algorithm,improving the reliability of negative pressure prediction for gas extraction.Taking gas extraction flow rate or gas extraction volume fraction as the target value,the PSO-BP algorithm predicted the corresponding extraction negative pressure,and the valve opening was adjusted to make the borehole negative pressure reach the predicted value,thereby achieving precise control of gas extraction boreholes.The results showed that,compared with Extreme Learning Machine(ELM),Temporal Convolutional Network(TCN),and Support Vector Machine(SVM)algorithms,the BP algorithm more accurately captured the variation patterns of gas extraction data characteristics.The PSO-BP algorithm achieved better performance than the BP algorithm in terms of Mean Squared Error(MSE),Root Mean Squared Error(RMSE),Mean Absolute Error(MAE),Mean Bias Error(MBE),Mean Absolute Percentage Error(MAPE),and Coefficient of Determination(R2).After on-site implementation of intelligent borehole negative pressure control,both gas extraction volume fraction and gas extraction flow rate increased compared with those before implementation.

关键词

瓦斯抽采/钻孔负压调控/负压预测/粒子群优化/BP算法/抽采流量/抽采浓度

Key words

gas extraction/borehole negative pressure control/negative pressure prediction/particle swarm optimization/BP algorithm/extraction flow rate/extraction concentration

分类

矿业与冶金

引用本文复制引用

高涵,周爱桃,成小雨,程成,王东旭..基于PSO-BP的瓦斯抽采钻孔负压智能调控方法[J].工矿自动化,2025,51(12):72-79,8.

基金项目

深地国家科技重大专项项目(2024ZD1000408) (2024ZD1000408)

国家重点研发计划项目(2023YFF0615404) (2023YFF0615404)

中国中煤重大科技专项项目(20221BY001). (20221BY001)

工矿自动化

OA北大核心

1671-251X

访问量0
|
下载量0
段落导航相关论文