| 注册
首页|期刊导航|中国农业信息|基于改进的Mask R-CNN的农村建筑物智能识别方法

基于改进的Mask R-CNN的农村建筑物智能识别方法

胡锦源 阴紫薇 高毓欣 李盘盘 符家科 范冲

中国农业信息2025,Vol.37Issue(3):59-69,11.
中国农业信息2025,Vol.37Issue(3):59-69,11.DOI:10.12105/j.issn.1672-0423.20250305

基于改进的Mask R-CNN的农村建筑物智能识别方法

Intelligent recognition method for rural buildings based on improved Mask R-CNN

胡锦源 1阴紫薇 2高毓欣 2李盘盘 3符家科 2范冲3

作者信息

  • 1. 新加坡国立大学 新加坡 119077
  • 2. 中国电建集团中南勘测设计研究院有限公司,湖南 长沙 410000
  • 3. 中南大学地球科学与信息物理学院,湖南 长沙 410083
  • 折叠

摘要

Abstract

[Purpose]This study proposes an improved Mask R-CNN-based method for instance segmentation of rural buildings,aiming to enhance identification efficiency and promote the deep integration of artificial intelligence in agricultural informatization.[Method]Employing high-resolution orthophotos captured by UAV platforms as the data source,a total of 1 548 building images were obtained after cropping and screening,with annotations completed using the Labelme tool.The structure of the instance segmentation algorithm was enhanced by replacing the backbone network in the Mask R-CNN model.This modification effectively improved the detection accuracy for rural building targets.[Result]On the test set,the improved Mask R-CNN model exhibited enhanced overall accuracy,improved detection performance at high IoU thresholds,and superior segmentation capability for rural buildings across different scales.It successfully enabled the automatic extraction of building outlines from remote sensing imagery,thereby effectively reducing the reliance on manual mapping and significantly boosting surveying efficiency.[Conclusion]The enhanced Mask R-CNN model improves both the detection accuracy and the fine-grained detail-capturing capability for rural buildings,contributing significantly to the advancement of intelligent mapping.

关键词

人工智能/Mask R-CNN/农村建筑物/智能成图

Key words

artificial intelligence(AI)/Mask R-CNN/rural buildings/intelligent mapping

引用本文复制引用

胡锦源,阴紫薇,高毓欣,李盘盘,符家科,范冲..基于改进的Mask R-CNN的农村建筑物智能识别方法[J].中国农业信息,2025,37(3):59-69,11.

基金项目

湖南省重点领域研发计划"城市建筑群安全风险监测和评估研究"(2023SK2012) (2023SK2012)

中国农业信息

1672-0423

访问量1
|
下载量0
段落导航相关论文