| 注册
首页|期刊导航|市政技术|基于机器学习的深基坑支护结构设计与稳定性分析研究

基于机器学习的深基坑支护结构设计与稳定性分析研究

邵春鹏

市政技术2025,Vol.43Issue(12):82-91,10.
市政技术2025,Vol.43Issue(12):82-91,10.DOI:10.19922/j.1009-7767.2025.12.082

基于机器学习的深基坑支护结构设计与稳定性分析研究

Study on the Structures Design and Stability Analysis of Deep Foundation Pit Support by Machine Learning Methods

邵春鹏1

作者信息

  • 1. 中铁十八局集团建筑安装工程有限公司,天津 300308
  • 折叠

摘要

Abstract

The application of steel support axial force servo systems in deep foundation pit engineering has not yet been widely adopted,and field measurement data is particularly scarce.Based on 2 212 measured data points,5 machine learning methods(radial basis function neural networks,backpropagation neural networks,k-nearest neighbour algorithms,support vector machines,and random forests)are employed for analysis.The dataset includes one output parameter(support axial force)and seven input parameters(support vertical position,support planar position,time,temperature,soil density,cohesion,and internal friction angle).The model performance was eval-uated by 3 metrics of root mean square error,correlation coefficient,and mean absolute error.The results indicate that the backpropagation neural network performed best on the test dataset,with the root mean square error,corre-lation coefficient,and mean absolute error values of 71.8 kN,0.991 8,and 56.2 kN,respectively.This confirms the potential of machine learning methods for the precise prediction of support axial forces,providing effective sup-port for safety control and construction planning,which is crucial for the safety and stability of deep foundation pit engineering.

关键词

深基坑开挖/钢支撑结构/支撑轴力/机器学习/时间/温度

Key words

deep foundation pit excavation/steel support structure/support axial force/machine learning/time/temperature

分类

建筑与水利

引用本文复制引用

邵春鹏..基于机器学习的深基坑支护结构设计与稳定性分析研究[J].市政技术,2025,43(12):82-91,10.

市政技术

1009-7767

访问量0
|
下载量0
段落导航相关论文