| 注册
首页|期刊导航|同济大学学报(自然科学版)|基于改进粒子群算法的土参反演及基坑开挖变形预测

基于改进粒子群算法的土参反演及基坑开挖变形预测

何平 官子愈 狄宏规 郭慧吉 吴迪 周俊宏 周顺华

同济大学学报(自然科学版)2026,Vol.54Issue(1):87-97,11.
同济大学学报(自然科学版)2026,Vol.54Issue(1):87-97,11.DOI:10.11908/j.issn.0253-374x.24288

基于改进粒子群算法的土参反演及基坑开挖变形预测

Soil Parameter Inversion and Foundation Pit Excavation Deformation Prediction Based on MLAPSO

何平 1官子愈 2狄宏规 1郭慧吉 3吴迪 3周俊宏 4周顺华1

作者信息

  • 1. 同济大学上海市轨道交通结构耐久与系统安全重点实验室,上海 201804
  • 2. 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室,北京 100038
  • 3. 同济大学上海市轨道交通结构耐久与系统安全重点实验室,上海 201804||上海申通地铁集团有限公司,上海 201102
  • 4. 宁波市市域铁路投资发展有限公司,浙江宁波 315101
  • 折叠

摘要

Abstract

To overcome the limitations of traditional intelligent optimization algorithms,such as low accuracy,slow convergence,and susceptibility to local optima,this paper proposes a multilevel learning adaptive particle swarm optimization(MLAPSO)algorithm.The algorithm incorporates a best-point set strategy and multiple search mechanisms,including global search,the FDB mechanism,and the Levy flight strategy.Tests on the CEC—2022 benchmark functions demonstrate that MLAPSO significantly outperforms traditional optimization algorithms in terms of search accuracy and stability.Furthermore,combined with the load-structure model of foundation pit excavation,it proposes a method for soil parameter inversion and staged deformation prediction of foundation pits based on MLAPSO.The method is validated using monitoring data from a metro station.Results show that the approach can accurately invert soil parameters,and the predicted deformation of the retaining structures based on these parameters aligns closely with measured deformations,confirming the effectiveness and reliability of the method.

关键词

基坑工程/多级学习自适应粒子群算法(MLAPSO)/土体参数反演/基坑变形预测

Key words

foundation pit engineering/multilevel learning adaptive particle swarm optimization algorithm(MLAPSO)/soil parameter inversion/foundation pit deformation prediction

分类

交通工程

引用本文复制引用

何平,官子愈,狄宏规,郭慧吉,吴迪,周俊宏,周顺华..基于改进粒子群算法的土参反演及基坑开挖变形预测[J].同济大学学报(自然科学版),2026,54(1):87-97,11.

基金项目

国家自然科学基金(52278456) (52278456)

同济大学学报(自然科学版)

0253-374X

访问量0
|
下载量0
段落导航相关论文