| 注册
首页|期刊导航|网络安全与数据治理|基于双模型的半监督流形混合流量分类方法

基于双模型的半监督流形混合流量分类方法

马可 何明枢 蔡晶晶 王小娟

网络安全与数据治理2026,Vol.45Issue(1):1-8,8.
网络安全与数据治理2026,Vol.45Issue(1):1-8,8.DOI:10.19358/j.issn.2097-1788.2026.01.001

基于双模型的半监督流形混合流量分类方法

A semi-supervised manifold mixup traffic classification method based on Mean-Teacher

马可 1何明枢 1蔡晶晶 2王小娟1

作者信息

  • 1. 北京邮电大学 电子工程学院,北京 100876
  • 2. 永信至诚科技集团股份有限公司,北京 100089
  • 折叠

摘要

Abstract

Deep Learning techniques have been widely applied in the field of network traffic classification.However,there still exist various challenges,including dependency on large scale data and overfitting.To address these issues,a semi-supervised deep learning method combi-ning mean teacher and manifold mixup is proposed.This method employs a teacher-student architecture,utilizing Exponential Moving Average(EMA)to assist the model learning process and to enhance the generalization capability of model.Additionally,manifold mixup in the feature space effectively refines the model's decision boundary,strengthening robustness.Experimental results demonstrate that with only 1 000 sam-ples per class,the method achieves over 90%accuracy across three network traffic datasets while maintaining outstanding performance under few-shot condition.

关键词

流量分类/半监督学习/流形混合/教师-学生模型

Key words

traffic classification/semi-supervised learning/manifold mixup/teacher-student model

分类

信息技术与安全科学

引用本文复制引用

马可,何明枢,蔡晶晶,王小娟..基于双模型的半监督流形混合流量分类方法[J].网络安全与数据治理,2026,45(1):1-8,8.

基金项目

国家自然科学基金(62402053,62227805) (62402053,62227805)

中央高校基本科研业务费专项资金(2025KYQD17(BUPT)) (2025KYQD17(BUPT)

网络安全与数据治理

2097-1788

访问量0
|
下载量0
段落导航相关论文