| 注册
首页|期刊导航|物探与化探|基于深度学习的零井源距VSP上、下行波分离方法

基于深度学习的零井源距VSP上、下行波分离方法

王腾宇 邓丁丁 郑多明 刘洋 张振 罗文君

物探与化探2025,Vol.49Issue(6):1319-1332,14.
物探与化探2025,Vol.49Issue(6):1319-1332,14.DOI:10.11720/wtyht.2025.0115

基于深度学习的零井源距VSP上、下行波分离方法

A deep learning-based method for separating up-and down-going waves in zero-offset vertical seismic profiles

王腾宇 1邓丁丁 2郑多明 1刘洋 2张振 3罗文君4

作者信息

  • 1. 中国石油天然气股份有限公司塔里木油田分公司勘探开发研究院,新疆库尔勒 841000||中国石油天然气集团有限公司超深层复杂油气藏勘探开发技术研发中心,新疆库尔勒 841000||新疆维吾尔自治区超深层复杂油气藏勘探开发工程研究中心,新疆库尔勒 841000
  • 2. 中国石油大学(北京)油气资源与工程全国重点实验室,北京 102249
  • 3. 中国石油天然气股份有限公司塔里木油田分公司勘探开发研究院,新疆库尔勒 841000
  • 4. 北京博豪罗根石油技术有限公司,北京 100085
  • 折叠

摘要

Abstract

Wavefield separation serves as a key step in processing the data of vertical seismic profiles(VSPs).Its accuracy directly in-fluences seismic imaging,inversion of elastic parameters,lithology identification,and interpretation of hydrocarbon-bearing properties.Traditional methods face challenges in wavefield separation.For example,the median filtering requires manual intervention,often intro-ducing errors and thus compromising separation accuracy;the FK filtering yields high accuracy but low efficiency.In contrast,deep learning techniques offer high automation,enabling both high accuracy and efficiency in wavefield separation.Hence,this study proposed a deep learning-based method for separating up-and down-going waves in zero-offset VSPs.First,the up-and down-going waves were separated through FK transform,generating a dataset.Second,a deep learning-based model,Unet++,was constructed for separating these waves in VSPs.Third,the relative down-going wavefield(obtained by subtracting the predicted up-going wavefield from the full wavefield)was incorporated into the loss function to mitigate the impacts of amplitude differences between up-and down-going waves on network updates.Moreover,the structural similarity index measure(SSIM)was employed as a regularization constraint to assist the net-work in learning the structural characteristics of the wavefield.The test results of actual VSP data demonstrate that the trained network can effectively learn the characteristics of the up-and down-going waves,achieving high accuracy and efficiency in wavefield separation.

关键词

深度学习/波场分离/垂直地震剖面(VSP)/Unet++

Key words

deep learning/wavefield separation/vertical seismic profile(VSP)/Unet++

分类

天文与地球科学

引用本文复制引用

王腾宇,邓丁丁,郑多明,刘洋,张振,罗文君..基于深度学习的零井源距VSP上、下行波分离方法[J].物探与化探,2025,49(6):1319-1332,14.

基金项目

中石油塔里木项目"超深层井中地震与重磁电研究"(YF202401.01.05) (YF202401.01.05)

物探与化探

1000-8918

访问量0
|
下载量0
段落导航相关论文