| 注册
首页|期刊导航|计算机技术与发展|基于几何-语义约束与扩散增强的线描生成

基于几何-语义约束与扩散增强的线描生成

贵向泉 张继续 李立 李琪 张斌轩

计算机技术与发展2026,Vol.36Issue(1):55-63,9.
计算机技术与发展2026,Vol.36Issue(1):55-63,9.DOI:10.20165/j.cnki.ISSN1673-629X.2025.0217

基于几何-语义约束与扩散增强的线描生成

Line Drawing Generation Based on Geometric-semantic Constraints with Diffusion Enhancement

贵向泉 1张继续 2李立 3李琪 2张斌轩4

作者信息

  • 1. 兰州理工大学 计算机与通信学院,甘肃 兰州 730050||青藏高原人文环境数据智能实验室,甘肃 兰州 730000
  • 2. 兰州理工大学 计算机与通信学院,甘肃 兰州 730050
  • 3. 兰州理工大学 计算机与通信学院,甘肃 兰州 730050||兰州大学 信息科学与工程学院,甘肃 兰州 730000
  • 4. 庆阳职业技术学院 数字信息系,甘肃 庆阳 745000
  • 折叠

摘要

Abstract

As a historical relic of China,colored pottery has important artistic and cultural research value.Aiming at the problems of structure loss,line distortion and detail blurring,which are common in the generation of colored pottery line drawings,a two-stage high-fidelity reconstruction model,GS-CycleDiff,is proposed.Based on CycleGAN,the geometric loss and semantic loss are designed.The pseudo-depth map generated by MiDaS monocular depth estimation is aligned with the original photo depth map respectively to ensure the coherence of the line drawing at key geometric structures;and with the help of the CLIP model to extract the semantic features of the image,the correspondence between the constrained generation result and the original image at the level of cultural symbols is carried out by minimizing the distance between the CLIP of the input photo and the generated line drawing.Subsequently,the preliminary generated line drawings are fed into a lightweight diffusion denoising network,which suppresses background noise and strengthens line clarity through multi-step iterative denoising and detail enhancement.The experimental results show that the images generated by GS-CycleDiff significantly outperform the traditional CycleGAN model and other comparative models in terms of line clarity,geometric structure,semantic consistency,and overall visual realism,and are capable of generating fine line-drawing images in multiple styles and complex backgrounds.

关键词

线描画/CycleGAN/GS-CycleDiff算法/几何损失/语义损失/扩散模型

Key words

line drawing/CycleGAN/GS-CycleDiff algorithm/geometric loss/semantic loss/diffusion modeling

分类

信息技术与安全科学

引用本文复制引用

贵向泉,张继续,李立,李琪,张斌轩..基于几何-语义约束与扩散增强的线描生成[J].计算机技术与发展,2026,36(1):55-63,9.

基金项目

甘肃省教育厅产业支撑计划项目(2023CYZC-25) (2023CYZC-25)

甘肃省自然科学基金(24JRRM009) (24JRRM009)

计算机技术与发展

1673-629X

访问量0
|
下载量0
段落导航相关论文