| 注册
首页|期刊导航|通信学报|基于原型聚类机制的个性化联邦学习方法

基于原型聚类机制的个性化联邦学习方法

刘海军 王浩龙 刘雅辉 马洪亮

通信学报2025,Vol.46Issue(z1):92-101,10.
通信学报2025,Vol.46Issue(z1):92-101,10.DOI:10.11959/j.issn.1000-436x.2025235

基于原型聚类机制的个性化联邦学习方法

Personalized federated learning method based on prototype clustering mechanism

刘海军 1王浩龙 1刘雅辉 1马洪亮1

作者信息

  • 1. 石河子大学信息科学与技术学院,新疆 石河子 832003
  • 折叠

摘要

Abstract

Existing studies mostly adapt knowledge distillation or multi-task training for personalized federated learning,but these methods typically require additional distillation steps or high communication overhead,affecting overall model performance.To address this challenge,a personalized federated learning method FedPC based on prototype clustering was proposed.By introducing a client clustering mechanism,FedPC grouped clients with similar data distributions into clusters based on prototypes,thereby reducing the impact of data distribution differences on model performance.To bet-ter adapt the personalized needs of local models of participants,the client model was decoupled into a feature extractor and a personalized classifier.At the same time,an adaptive weighted aggregation strategy and a joint loss function were used to co-optimize the training processes of clients and the server,achieving better model performance.Experimental re-sults on three commonly used datasets,Cifar10,Cifar100,and FMNIST,show that FedPC outperforms traditional feder-ated learning methods in terms of model accuracy,verifying its effectiveness in handling data heterogeneity issues.

关键词

个性化联邦学习/数据隐私/数据异质性/原型

Key words

personalized federated learning/data privacy/data heterogeneity/prototype

分类

信息技术与安全科学

引用本文复制引用

刘海军,王浩龙,刘雅辉,马洪亮..基于原型聚类机制的个性化联邦学习方法[J].通信学报,2025,46(z1):92-101,10.

基金项目

兵团重大科技基金资助项目(No.2023AA001) (No.2023AA001)

八师石河子市财政科技计划基金资助项目(No.2024GY08) (No.2024GY08)

兵团指导性科技计划基金资助项目(No.2023ZD045) (No.2023ZD045)

兵团重点领域科技攻关基金资助项目(No.2024AB080) (No.2024AB080)

兵团科技创新人才计划基金资助项目(No.2023CB005,No.2023ZD066,No.2022CB002-08)Bingtuan Major Science and Technology Project(No.2023AA001),Shihezi Financial Science and Technology Project(No.2024GY08),Bingtuan Science and Technology Program(No.2023ZD045),Bingtuan Key Areas Science and Technology Research Project(No.2024AB080),Bingtuan Science and Technology Innovation Talent Program(No.2023CB005,No.2023ZD066,No.2022CB002-08) (No.2023CB005,No.2023ZD066,No.2022CB002-08)

通信学报

OA北大核心

1000-436X

访问量0
|
下载量0
段落导航相关论文