| 注册
首页|期刊导航|中国兽医杂志|基因组测序和人工智能在细菌耐药研究领域的应用进展

基因组测序和人工智能在细菌耐药研究领域的应用进展

王祥玉 郝天阳 童泽宇 彭凯 王志强 李瑞超

中国兽医杂志2026,Vol.62Issue(1):13-28,16.
中国兽医杂志2026,Vol.62Issue(1):13-28,16.DOI:10.20157/j.cnki.zgsyzz.2026.01.003

基因组测序和人工智能在细菌耐药研究领域的应用进展

Advances in the Application of Genomic Sequencing and Artificial Intelligence in Bacterial Antimicrobial Resistance Research

王祥玉 1郝天阳 1童泽宇 1彭凯 1王志强 2李瑞超2

作者信息

  • 1. 扬州大学兽医学院,江苏 扬州 225009
  • 2. 扬州大学兽医学院,江苏 扬州 225009||江苏高校动物重要疫病与人兽共患病防控协同创新中心,江苏 扬州 225009
  • 折叠

摘要

Abstract

With the rapid global spread of antimicrobial-resistant bacteria,the swift identification,tracking,and risk assessment of antimicrobial resistance genes(ARGs)have become priorities in public health and biosafety.Traditional resistance detection relies on culture-based and phenotypic assays,which are time-consuming and insufficient for fully characterizing the diversity of ARGs and their distribution and transmission across ecological niches.In recent years,the rapid advancement of genomics,particularly whole-genome sequencing(WGS)and metagenomic next-generation sequencing(mNGS),has provided unique micro-level insights into resistance mechanisms and ARGs dissemination.Meanwhile,the integration of artificial intelligence(AI)has offered powerful new tools for analyzing large-scale genomic data and predicting resistance phenotypes,driving the development of intelligent models in antimicrobial resistance research.This review summarizes recent progress in applying genomic sequencing and AI to antimicrobial resistance studies,outlines their fundamental principles and key technological pathways,and highlights applications in ARGs identification,functional prediction,and transmission risk assessment.By integrating machine learning with multi-omics data analysis,researchers can more accurately identify ARGs and gain deeper understanding of their ecological distribution and transmission patterns,offering critical methodological references and research insights.The deep integration of genomic sequencing and AI is propelling antimicrobial resistance research into a new era characterized by data-driven approaches and intelligent decision-making.In the future,this synergistic model is expected to play a key role in resistance surveillance,transmission interruption,and precision interventions,providing robust scientific support for achieving the goals of"One Health.".

关键词

全基因组测序(WGS)/宏基因组测序(mNGS)/人工智能(AI)/细菌耐药/同一健康

Key words

whole genome sequencing(WGS)/metagenomic next-generation sequencing(mNGS)/artificial intelligence(AI)/antimicrobial resistance/One Health

分类

农业科技

引用本文复制引用

王祥玉,郝天阳,童泽宇,彭凯,王志强,李瑞超..基因组测序和人工智能在细菌耐药研究领域的应用进展[J].中国兽医杂志,2026,62(1):13-28,16.

基金项目

国家重点研发计划项目(2024YFC3406300、2023YFD1800500) (2024YFC3406300、2023YFD1800500)

江苏省杰出青年科学基金项目(BK20231524) (BK20231524)

中国兽医杂志

0529-6005

访问量0
|
下载量0
段落导航相关论文