| 注册
首页|期刊导航|中南民族大学学报(自然科学版)|融合多模态信息与位置编码的阿尔茨海默病诊断

融合多模态信息与位置编码的阿尔茨海默病诊断

刘蓉 刘汝璇 李广昶 柴新宇 谭桂梅 唐奇伶

中南民族大学学报(自然科学版)2026,Vol.45Issue(2):212-220,9.
中南民族大学学报(自然科学版)2026,Vol.45Issue(2):212-220,9.DOI:10.20056/j.cnki.ZNMDZK.20250843

融合多模态信息与位置编码的阿尔茨海默病诊断

Diagnosis of Alzheimer's disease via fusion of multimodal information and position encoding

刘蓉 1刘汝璇 1李广昶 1柴新宇 1谭桂梅 1唐奇伶1

作者信息

  • 1. 中南民族大学 生物医学工程学院,武汉 430074||中南民族大学 认知科学国家民委重点实验室,武汉 430074
  • 折叠

摘要

Abstract

Alzheimer's Disease(AD),as a fatal neurodegenerative disease,holds immense significance for early diagnosis and precise prediction of pathological regions in delaying disease progression and improving patient prognosis.Although past research has made progress in automated diagnostic technologies,the interpretability of existing methods remains the most significant issue troubling clinical studies,despite their commendable diagnostic accuracy.Against this backdrop,a diagnostic model for Alzheimer's Disease is proposed that integrates three-dimensional position encoding with multimodal data.The model combines three-dimensional position encoding,Transformer self-attention mechanisms and Fully Convolutional Networks(FCN)to automatically extract effective features from three-dimensional medical imaging data,generating high-resolution disease probability maps representing the entire brain.Through a multimodal attention mechanism,the probability map is organically integrated with objective clinical information,achieving precise predictive diagnosis of AD while providing more interpretable aspects for the model's decision-making process.

关键词

阿尔茨海默病/磁共振影像/全卷积网络/三维位置编码/多模态注意力

Key words

Alzheimer's disease/magnetic resonance imaging/Fully Convolutional Network/three-dimensional position encoding/multimodal attention

分类

信息技术与安全科学

引用本文复制引用

刘蓉,刘汝璇,李广昶,柴新宇,谭桂梅,唐奇伶..融合多模态信息与位置编码的阿尔茨海默病诊断[J].中南民族大学学报(自然科学版),2026,45(2):212-220,9.

基金项目

湖北省重点研发计划资助项目(2022BAA037) (2022BAA037)

中央高校基本科研业务费专项资金资助项目(CZQ24015) (CZQ24015)

中南民族大学学报(自然科学版)

1672-4321

访问量0
|
下载量0
段落导航相关论文