| 注册
首页|期刊导航|浙江电力|基于多对抗迁移学习的暂态稳定评估模型

基于多对抗迁移学习的暂态稳定评估模型

卢国强 李剑 王亦婷 肖智伟 王怀远

浙江电力2026,Vol.45Issue(1):23-33,11.
浙江电力2026,Vol.45Issue(1):23-33,11.DOI:10.19585/j.zjdl.202601003

基于多对抗迁移学习的暂态稳定评估模型

A transient stability assessment model based on multi-adversarial transfer learning

卢国强 1李剑 1王亦婷 1肖智伟 2王怀远2

作者信息

  • 1. 国网青海省电力公司,西宁 810003
  • 2. 福州大学 电气工程与自动化学院,福州 350116
  • 折叠

摘要

Abstract

Transfer learning has been introduced to power system transient stability assessment(TSA)to expand scenario coverage.However,when transferring the classification boundary knowledge from known faults to potential fault assessments,existing methods often exhibit low accuracy for critical samples in the target domain.To address this,this paper proposes a multi-adversarial transfer learning model with multi-domain discriminators.By incorpo-rating fault severity indices as prior knowledge,fault samples are subdivided into four classes.Multiple domain dis-criminators then align these four sample categories between source and target domains.Through a multi-adversarial adaptation framework,granular alignment of sample distribution is achieved.This approach significantly improves the assessment accuracy for critical samples in the target domain while enhancing the model's positive transfer capa-bility.Simulation results on the IEEE 39-bus system and a regional power grid validate the effectiveness of the pro-posed method.

关键词

暂态稳定评估/迁移学习/对抗迁移/多域鉴别器/故障严重程度

Key words

TSA/transfer learning/adversarial transfer/multi-domain discriminator/fault severity

引用本文复制引用

卢国强,李剑,王亦婷,肖智伟,王怀远..基于多对抗迁移学习的暂态稳定评估模型[J].浙江电力,2026,45(1):23-33,11.

基金项目

福建省自然科学基金(2022J01113) (2022J01113)

国网青海省电力有限公司科技项目(522800230001) (522800230001)

浙江电力

1007-1881

访问量0
|
下载量0
段落导航相关论文