| 注册
首页|期刊导航|浙江电力|基于SAO-BiLSTM-KAN的电池健康状态估计

基于SAO-BiLSTM-KAN的电池健康状态估计

张彬桥 邹霖 万刚

浙江电力2026,Vol.45Issue(1):57-65,9.
浙江电力2026,Vol.45Issue(1):57-65,9.DOI:10.19585/j.zjdl.202601006

基于SAO-BiLSTM-KAN的电池健康状态估计

SOH estimation for lithium-ion batteries based on SAO-BiLSTM-KAN

张彬桥 1邹霖 1万刚2

作者信息

  • 1. 三峡大学 电气与新能源学院,湖北 宜昌 443002||梯级水电站运行与控制湖北省重点实验室,湖北 宜昌 443002
  • 2. 中国长江电力股份有限公司检修厂,湖北 宜昌 443002
  • 折叠

摘要

Abstract

To improve the estimation accuracy of the state of health(SOH)for lithium-ion batteries,a novel estima-tion method based on snow ablation optimization,bidirectional long short-term memory network and Kolmogorov-Arnold networks(SAO-BiLSTM-KAN)is proposed.Firstly,data is extracted from the battery charging process,and health features are derived through incremental capacity analysis.These features are then fed into a BiLSTM network to capture long-term dependencies within the time series.Subsequently,the outputs from the BiLSTM are passed to the KAN to explore complex nonlinear relationships among the features,thereby enhancing estimation performance.To achieve optimal results,the SAO algorithm is introduced to optimize the model's hyperparameters.Experimental results demonstrate that the proposed model delivers outstanding performance across various comparative tests,with both the root mean square error(RMSE)and mean absolute error(MAE)for SOH estimation remaining below 0.919%,validating the method's superior prediction accuracy and generalization capability.

关键词

锂离子电池/健康状态/BiLSTM/KAN/雪消融优化算法

Key words

lithium-ion battery/SOH/BiLSTM/KAN/SAO

引用本文复制引用

张彬桥,邹霖,万刚..基于SAO-BiLSTM-KAN的电池健康状态估计[J].浙江电力,2026,45(1):57-65,9.

基金项目

湖北省自然科学基金(2022CFD167) (2022CFD167)

浙江电力

1007-1881

访问量0
|
下载量0
段落导航相关论文