| 注册
首页|期刊导航|浙江电力|考虑多维气象数据与时间影响的风电功率区间预测

考虑多维气象数据与时间影响的风电功率区间预测

黄学勤 杨鹏举 赵耀 高少炜

浙江电力2026,Vol.45Issue(1):66-77,12.
浙江电力2026,Vol.45Issue(1):66-77,12.DOI:10.19585/j.zjdl.202601007

考虑多维气象数据与时间影响的风电功率区间预测

Wind power interval forecasting based on multidimensional meteorological data and temporal effects

黄学勤 1杨鹏举 2赵耀 1高少炜1

作者信息

  • 1. 上海电力大学 电气工程学院,上海 200090
  • 2. 国网上海市电力公司金山供电公司,上海 200540
  • 折叠

摘要

Abstract

Existing wind power interval forecasting models based on forecasting errors typically consider only the in-fluence of wind speed while neglecting the temporal effects in the modeling process.To address these challenges,this paper proposes a wind power interval forecasting model that combines the point forecasting model of neural hier-archical interpolation for time series forecasting(N-HiTS)with the theory of generalized additive model(GAM)-D-Vine copula based quantile regression(DVQR).First,the N-HiTS is employed to obtain point predictions of wind power and corresponding forecasting errors.Then,a DVQR model for the forecasting errors is constructed,where temporal variables are incorporated via P-splines GAM to model the correlation coefficients corresponding to Copula parameters,thereby obtaining conditional quantiles of the forecasting errors.Finally,the point predictions are cor-rected based on the conditional median of errors,and forecasting intervals are generated by superimposing the condi-tional quantiles of errors.Validation using actual operational data from a wind farm in Shanxi Province,China dem-onstrates the effectiveness and superiority of the proposed method.

关键词

风电功率预测/广义可加模型/分位数回归/区间预测

Key words

wind power forecasting/GAM/quantile regression/interval forecasting

引用本文复制引用

黄学勤,杨鹏举,赵耀,高少炜..考虑多维气象数据与时间影响的风电功率区间预测[J].浙江电力,2026,45(1):66-77,12.

基金项目

国家自然科学基金(52377111) (52377111)

浙江电力

1007-1881

访问量0
|
下载量0
段落导航相关论文