| 注册
首页|期刊导航|中山大学学报(自然科学版)(中英文)|基于IGWO-STCPF的自主水下航行器跟踪方法

基于IGWO-STCPF的自主水下航行器跟踪方法

邢传玺 孟轶涵 孟强 保德彪

中山大学学报(自然科学版)(中英文)2026,Vol.65Issue(1):64-75,12.
中山大学学报(自然科学版)(中英文)2026,Vol.65Issue(1):64-75,12.DOI:10.13471/j.cnki.acta.snus.ZR20250190

基于IGWO-STCPF的自主水下航行器跟踪方法

AUV tracking method based on Improved Grey Wolf Optimizer and Strong Tracking Cubature Kalman Particle Filter

邢传玺 1孟轶涵 1孟强 1保德彪1

作者信息

  • 1. 云南民族大学电气信息工程学院/云南省无人自主系统重点实验室,云南 昆明 650504
  • 折叠

摘要

Abstract

This paper proposes an Improved Grey Wolf Optimization-based Strong Tracking Cubature Kalman Particle Filter algorithm(IGWO-STCPF).The proposed method first employs a Strong Tracking Cubature Kalman Filter(STCKF)to incorporate measurement information for dynamically adjusting the particle mean and covariance,thereby enhancing the effectiveness of importance sampling.Then,an entropy-weighted GWO is introduced into the resampling stage to mitigate particle degeneration and improve estimation accuracy.Simulation results demonstrate that,compared with STCKF,PF,PSO-PF,and PSO-CPF algorithms,the proposed IGWO-STCPF improves trajectory estimation accuracy by 13.41%,18.58%,21.86%,and 21.33%,respectively.These results confirm the robustness and effectiveness of the proposed method in complex underwater scenarios.

关键词

水下自主航行器/粒子滤波/强跟踪容积卡尔曼滤波/灰狼优化/信息熵

Key words

autonomous underwater vehicle/PF/STCKF/GWO/information entropy

分类

信息技术与安全科学

引用本文复制引用

邢传玺,孟轶涵,孟强,保德彪..基于IGWO-STCPF的自主水下航行器跟踪方法[J].中山大学学报(自然科学版)(中英文),2026,65(1):64-75,12.

基金项目

国家自然科学基金(61761048) (61761048)

云南省基础研究专项(202101AT070132) (202101AT070132)

中山大学学报(自然科学版)(中英文)

0529-6579

访问量0
|
下载量0
段落导航相关论文