| 注册
首页|期刊导航|食品与发酵工业|基于SVM方法的猪肉新鲜度分类问题研究

基于SVM方法的猪肉新鲜度分类问题研究

刘静 管骁

食品与发酵工业2011,Vol.37Issue(4):221-225,5.
食品与发酵工业2011,Vol.37Issue(4):221-225,5.

基于SVM方法的猪肉新鲜度分类问题研究

Studies on the Classification of Pork Freshness by SVM

刘静 1管骁2

作者信息

  • 1. 上海海事大学信息工程学院,上海,200135
  • 2. 上海理工大学医疗器械与食品学院,上海,200093
  • 折叠

摘要

Abstract

The pork freshness is a big safety issue on people's health. In this paper, fresh pork samples were stored in decompression storage room. The TVB-N content, total bacterial count, pH value and sensory scores of the samples were determined at different storage stage. SVM neural networks models were obtained by training the sample data with different kernel functions and cross -validation. Furthermore, the test data were used to predict the freshness of pork sample by SVM neural network. The experiment results suggested that the SVM neural networks obtained higher correct classification rate of pork freshness with the right kernel function and cross - validation according to the sample performance.

关键词

支持向量机/猪肉新鲜度/分类

Key words

support vector machine/ pork freshness/classification

引用本文复制引用

刘静,管骁..基于SVM方法的猪肉新鲜度分类问题研究[J].食品与发酵工业,2011,37(4):221-225,5.

基金项目

上海市晨光计划项目(2008CG055),上海市教委科研创新项目(10YZ113) (2008CG055)

食品与发酵工业

OA北大核心CSCDCSTPCD

0253-990X

访问量2
|
下载量0
段落导航相关论文