| 注册
首页|期刊导航|郑州轻工业学院学报(自然科学版)|基于智能优化型径向基神经网络的板形模式识别研究

基于智能优化型径向基神经网络的板形模式识别研究

解相朋 杨录山

郑州轻工业学院学报(自然科学版)2012,Vol.27Issue(3):89-92,4.
郑州轻工业学院学报(自然科学版)2012,Vol.27Issue(3):89-92,4.

基于智能优化型径向基神经网络的板形模式识别研究

Study on flatness pattern recognition based on intelligent optimal radial basis function neural network

解相朋 1杨录山2

作者信息

  • 1. 中冶南方工程技术有限公司国家钢铁生产能效优化工程技术研究中心,湖北武汉430223
  • 2. 解放军信息工程大学理学院,河南郑州450002
  • 折叠

摘要

Abstract

In order to deal with the problem that the usual flatness pattern recognition methods based on neural network have some flaws which restrict their applications,i, e. ,lower precision for the obtained networks, lower velocity for both on-line recognition and complex network modeling,a kind of flatness pattern recognition based on intelligent optimal radial basis function (RBF) neural network was proposed. In the process of modeling the neural network based on some training data,an improved particle swarm optimization algorithm was proposed to optimize both the number of network nodes and the value of network parameters. Therefore,the approach has simpler structure and better generalization than before. The simulation experiment results showed that the approach was effective and could increase the precision of flatness control.

关键词

板形控制/智能优化算法/模式识别/径向基神经网络

Key words

flatness control/ intelligent optimal algorithm/ pattern recognition/ radial basis function neural network

分类

计算机与自动化

引用本文复制引用

解相朋,杨录山..基于智能优化型径向基神经网络的板形模式识别研究[J].郑州轻工业学院学报(自然科学版),2012,27(3):89-92,4.

基金项目

国家自然科学基金项目(60904017,61074073) (60904017,61074073)

郑州轻工业学院学报(自然科学版)

OACSTPCD

2095-476X

访问量0
|
下载量0
段落导航相关论文