| 注册
首页|期刊导航|机器人|基于肌电信号容错分类的手部动作识别

基于肌电信号容错分类的手部动作识别

丁其川 赵新刚 韩建达

机器人Issue(1):9-16,8.
机器人Issue(1):9-16,8.DOI:10.13973/j.cnki.robot.2015.0009

基于肌电信号容错分类的手部动作识别

Recognizing Hand Motions Based on Fault-tolerant Classification with EMG Signals

丁其川 1赵新刚 2韩建达1

作者信息

  • 1. 中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016
  • 2. 中国科学院大学,北京 100049
  • 折叠

摘要

Abstract

In view of the fault/missing data problem caused by disconnected/damaged electrodes and data-transmission in-terrupting in myoelectric-interface systems, an EMG (electromyography) fault-tolerant classification method based on Gaus-sian mixture model is proposed, with which an incomplete-data sample can be classified via marginalizing or conditional-mean imputation of the fault/missing data in the EMG feature sample. The proposed method is applied to recognizing five kinds of hand motion. Experimental results show that the proposed method can provide higher motion-recognition accuracy than that by the traditional zero and mean imputation methods. Finally, a myoelectric-hand platform is developed by involv-ing the fault-tolerant classification mechanism, and the online experiments show that the proposed method can effectively improve the robustness of myoelectric-interface systems.

关键词

肌电信号/数据丢失/动作分类/人机交互

Key words

EMG/data missing/motion classification/human-robot interface

分类

信息技术与安全科学

引用本文复制引用

丁其川,赵新刚,韩建达..基于肌电信号容错分类的手部动作识别[J].机器人,2015,(1):9-16,8.

基金项目

国家自然科学基金资助项目(61273355,61273356,61035005). ()

机器人

OA北大核心CSCDCSTPCD

1002-0446

访问量0
|
下载量0
段落导航相关论文