基于空间相关性和小波-神经网络的短期风电功率预测模型OA北大核心CSCDCSTPCD
Short-term wind power forecasting model based on spatial correlation and wavelet-neural network
为准确预测风电功率,该文提出1种预测模型。利用风速空间相关性把握风速时间序列的变化规律。将小波基函数植入神经网络的神经元节点中作为传递函数,对风电功率进行预测。对2相邻风电场短期风电功率预测算例进行仿真与对比分析。结果表明基于空间相关性和小波-神经网络(SC-WNN)的预测模型与逆传播神经网络(BPNN)和小波-神经网络(WNN)预测模型相比,平均百分比误差最大降低了0.1643。
In order to predict wind power accurately , a prediction model is proposed here .The inherent law of wind speed time series is extracted by the wind speed spatial correlation .The wavelet basis function is transferred into the neutron nodes of the neural network as the transfer function ,and the wind power is predicted .The short-term wind power forecasting examples of two adjacent wind farms are simulated and analyzed .The simulation results show t…查看全部>>
徐梅梅;任祖怡;陈建国;倪建军;张俊芳;宁楠;赵继伟
贵州电网有限责任公司电力科学研究院,贵州贵阳550002南京南瑞继保电气有限公司,江苏南京211102贵州电网有限责任公司电力科学研究院,贵州贵阳550002南京南瑞继保电气有限公司,江苏南京211102南京理工大学自动化学院,江苏南京210094贵州电网有限责任公司六盘水供电局,贵州六盘水553000贵州电网有限责任公司六盘水供电局,贵州六盘水553000
动力与电气工程
空间相关性小波-神经网络风电功率预测小波基函数逆传播神经网络风能利用
spatial correlationwavelet-neural networkwind power forecastingwavelet basis functionback propagation neural networkwind energy utilization
《南京理工大学学报(自然科学版)》 2016 (3)
360-365,6
国家科技支撑计划(2013 BAA02 B02)
评论