轻工学报2016,Vol.31Issue(5):69-74,6.DOI:10.3969/j.issn.2096-1553.2016.5.012
基于S ierpinski carpet模型的多孔介质迂曲度计算
Calculation of tortuosity porous media based on Sierpinski carpet model
摘要
Abstract
Based on the exact self-similar fractal Sierpinski carpet model,it has been studied that the function-al relationship of average tortuosity and porosity,and the functional relationship average tortuosity and mini-mum pore characteristic length and the fractal dimension by solving the distribution function of tortuosity of the control body.The results showed the tortuosity and porosity calculation obey the rule ofΓn =32 -12 φ;the minimum pore characteristic length,the fractal dimension and Euclidean space dimension determine the com-plexity of the internal space of object;the tortuosity of porous media flow lines decreases with the increasing of the internal porosity and increases with the decreasing of the smallest pores characteristic length and pore frac-tal dimension.关键词
多孔介质/迂曲度/分形/孔隙率/最小孔隙/分形维数Key words
porous media/tortuosity/fractal/porosity/smallest pores/fractal dimension分类
数理科学引用本文复制引用
袁培,付云飞,郝亚萍,王建军,吕彦力..基于S ierpinski carpet模型的多孔介质迂曲度计算[J].轻工学报,2016,31(5):69-74,6.基金项目
国家自然科学基金项目(51476148,21446011);郑州市科技攻关项目 ()