| 注册
首页|期刊导航|机器人|采用核主成分分析和相关向量机的人体运动意图识别

采用核主成分分析和相关向量机的人体运动意图识别

刘磊 杨鹏 刘作军 宋寅卯

机器人2017,Vol.39Issue(5):661-669,9.
机器人2017,Vol.39Issue(5):661-669,9.DOI:10.13973/j.cnki.robot.2017.0661

采用核主成分分析和相关向量机的人体运动意图识别

Human Motion Intent Recognition Based on Kernel Principal Component Analysis and Relevance Vector Machine

刘磊 1杨鹏 2刘作军 3宋寅卯2

作者信息

  • 1. 郑州轻工业学院建筑环境工程学院,河南 郑州 450002
  • 2. 河北工业大学控制科学与工程学院,天津 300130
  • 3. 智能康复装置与检测技术教育部工程研究中心,天津 300130
  • 折叠

摘要

Abstract

For the low recognition rate of human motion intent, a human gait recognition method combining kernel princi-pal component analysis (KPCA) and relevance vector machine (RVM) is proposed. The surface electromyography (sEMG) is selected as gait recognition information source, whose wavelet packet energy is extracted as characteristic value. The KPCA method is adopted to reduce the dimension of characteristic values for removing redundant information, so as to obtain the characteristic values which can reflect the human gait characteristics. Finally, the gait characteristic vectors are classified by RVM to recognize upslope, downslope, stairs ascent, stairs descent or level-ground walking. The feasibility and practicability of the method are verified through analyzing the gait recognition results of different subjects. Compared with BP (backpropa-gation) neural network and SVM (support vector machine) methods, the classification time of the proposed method is 2.6609 × 10?4 s, and the recognition accuracy is 96.67%, which demonstrate it is an effective gait recognition method.

关键词

表面肌电信号/核主成分分析/相关向量机/运动意图识别

Key words

surface electromyography (sEMG)/kernel principal component analysis (KPCA)/relevance vector machine (RVM)/motion intent recognition

分类

信息技术与安全科学

引用本文复制引用

刘磊,杨鹏,刘作军,宋寅卯..采用核主成分分析和相关向量机的人体运动意图识别[J].机器人,2017,39(5):661-669,9.

基金项目

国家自然科学基金(61203323) (61203323)

河南省高等学校重点科研项目(16B413006) (16B413006)

河北省自然科学基金(F2015202150,F2017202119) (F2015202150,F2017202119)

河南省科技厅重点科研项目(162300410070). (162300410070)

机器人

OA北大核心CSCDCSTPCD

1002-0446

访问量0
|
下载量0
段落导航相关论文