| 注册
首页|期刊导航|食品科学|基于红外光谱指纹和挥发性组分信息融合模型鉴别大米产地来源

基于红外光谱指纹和挥发性组分信息融合模型鉴别大米产地来源

杜梦佳 毛波 沈飞 李彭 裴斐 胡秋辉 方勇

食品科学2018,Vol.39Issue(8):243-248,6.
食品科学2018,Vol.39Issue(8):243-248,6.DOI:10.7506/spkx1002-6630-201808038

基于红外光谱指纹和挥发性组分信息融合模型鉴别大米产地来源

Identification of Geographical Origin of Rice Based on Fingerprint Information Fusion Model of Infrared Spectrum and Characteristic Volatile Compounds

杜梦佳 1毛波 2沈飞 1李彭 1裴斐 1胡秋辉 1方勇1

作者信息

  • 1. 南京财经大学食品科学与工程学院,江苏省现代粮食流通与安全协同创新中心,江苏高校粮油质量安全控制及深加工重点实验室,江苏 南京 210023
  • 2. 南京财经大学信息工程学院,江苏 南京 210023
  • 折叠

摘要

Abstract

This study aimed to establish an accurate model based on fingerprint information fusion of characteristic volatile compounds and infrared spectrum for identifying the geographical origin of rice. A total of 20, 19 and 15 rice samples respectively collected from Panjin, Sheyang and Wuchang were analyzed for their volatile compounds by gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectra of these samples were recorded. Analysis of variance (ANOVA) was employed to screen out the characteristic volatile components and characteristic infrared spectra, which were combined to establish a fingerprint information fusion model by partial least squares discriminant analysis (PLS-DA). The results showed that the identification accuracy of the fingerprint information fusion model was 97.4%, which was increased by 4.5% and 8.5% compared with individual infrared spectrum (92.9%) and volatile fingerprints (88.9%), respectively. Therefore, the PLS-DA information fusion model is feasible to identify the geographical origin of rice with high accuracy.

关键词

地理标志大米/产地鉴别/气相色谱-质谱联用/傅里叶红外光谱/偏最小二乘判别分析

Key words

geographical indication rice/geographical origin identification/gas chromatography-mass spectrometry (GC-MS)/Fourier transform infrared spectroscopy/partial least squares-discriminant analysis (PLS-DA)

分类

轻工纺织

引用本文复制引用

杜梦佳,毛波,沈飞,李彭,裴斐,胡秋辉,方勇..基于红外光谱指纹和挥发性组分信息融合模型鉴别大米产地来源[J].食品科学,2018,39(8):243-248,6.

基金项目

"十三五"国家重点研发计划重点专项(2016YFD0401203) (2016YFD0401203)

国家农产品质量安全风险评估项目(GJFP201700102) (GJFP201700102)

江苏省优势学科建设工程项目(PDAD) (PDAD)

食品科学

OA北大核心CSCDCSTPCD

1002-6630

访问量0
|
下载量0
段落导航相关论文