| 注册
首页|期刊导航|工程科学学报|大模型及其在材料科学中的应用与展望

大模型及其在材料科学中的应用与展望

李长泰 韩旭 蒋若辉 贠培文 胡鹏飞 班晓娟

工程科学学报2024,Vol.46Issue(2):290-305,16.
工程科学学报2024,Vol.46Issue(2):290-305,16.DOI:10.13374/j.issn2095-9389.2023.09.20.002

大模型及其在材料科学中的应用与展望

Application and prospects of large models in materials science

李长泰 1韩旭 2蒋若辉 2贠培文 3胡鹏飞 4班晓娟5

作者信息

  • 1. 北京科技大学北京材料基因工程高精尖创新中心,北京 100083||北京科技大学智能科学与技术学院,北京 100083
  • 2. 北京科技大学智能科学与技术学院,北京 100083
  • 3. 北京科技大学新材料技术研究院材料先进制备技术教育部重点实验室,北京 100083||北京科技大学新材料技术研究院现代交通金属材料与加工技术北京实验室,北京 100083
  • 4. 北京科技大学新材料技术研究院,北京 100083
  • 5. 北京科技大学北京材料基因工程高精尖创新中心,北京 100083||北京科技大学智能科学与技术学院,北京 100083||北京科技大学智能仿生无人系统教育部重点实验室,北京 100083||辽宁材料实验室材料智能技术研究所,沈阳 110004
  • 折叠

摘要

Abstract

Representative large models and their related applications,such as Bidirectional encoder representations from transformers(BERT),Generative pretrained transformer(GPT),Segment anything model(SAM),ChatGPT,DALL-E,Wenxin,and Pangu,have made astounding strides and exerted considerable influence across various fields domestically and abroad.They constantly attract the attention and follow-up of diverse societal sectors,including enterprises,universities,and research institutions.Large model applications have been successfully applied in scenarios such as biology,medicine,law,and social governance.Designing,modifying,and constructing domain-specific large models are crucial for truly harnessing their application value.Therefore,this paper provides inspiration for the application of large models in materials science.First,it provides an overview of large models,introducing their basic concepts,developmental process,technical classification,and features.Second,from the perspectives of the general domain and specific large models,this paper summarizes the applications of large models and analyzes the application scenarios and functions of various types of large models.Subsequently,considering the specific needs and current state of research in the field of materials science,this paper reviews the application of large language models,large visual models,and large multimodal models.It integrates engineering strategies and zero-shot knowledge transfer learning from specific tasks in natural language processing and computer vision and referencing typical application cases,clarifying current research paradigms and limiting factors for applying large models to materials science.To verify the effectiveness and potential of the visual large model,basal experiments of image segmentation and key structure extraction are performed on the microscopic image data of four types of materials using improved SAM,including Ni-superalloy,superalloy,polycrystalline pure iron grain,and Inconel 939.The experimental results reveal that the zero-shot segmentation capability of SAM has enormous potential for accurate and efficient representation of material microstructures.With the help of tailored prompt engineering,precise masks of the precipitated phase,grain boundaries,and cracks can be outputted without any label.Finally,this paper proposes future research opportunities for technologies and methods related to large models in materials science.This paper assesses the feasibility and technical challenges for the development and tuning of unimodal to comprehensive multimodal large models.With continuous innovations and collaborations,the horizon for large models in materials science seems boundlessly promising.The integration of these models can produce a new era of advanced research,leading to advancements that were previously considered unattainable.The symbiosis between materials science and large models can pave the way for unforeseen discoveries,enriching our scientific prowess.

关键词

大模型/深度学习/ChatGPT/SAM/材料科学/多模态

Key words

large models/deep learning/ChatGPT/SAM/materials science/multi-modality

分类

信息技术与安全科学

引用本文复制引用

李长泰,韩旭,蒋若辉,贠培文,胡鹏飞,班晓娟..大模型及其在材料科学中的应用与展望[J].工程科学学报,2024,46(2):290-305,16.

基金项目

国家自然科学基金资助项目(U22A2022) (U22A2022)

科技创新 2030-重大项目(2022ZD0118001) (2022ZD0118001)

工程科学学报

OA北大核心CSTPCD

2095-9389

访问量0
|
下载量0
段落导航相关论文