| 注册
首页|期刊导航|农机化研究|基于改进LightGBM的农机服务备件配置预测方法

基于改进LightGBM的农机服务备件配置预测方法

温彦博 王卓 白晓平

农机化研究2024,Vol.46Issue(4):7-14,8.
农机化研究2024,Vol.46Issue(4):7-14,8.

基于改进LightGBM的农机服务备件配置预测方法

Research on Agricultural Spare Parts Forecasting Based on Improved LightGBM

温彦博 1王卓 2白晓平2

作者信息

  • 1. 中国科学院 沈阳自动化研究所, 沈阳 110000||中国科学院 机器人与智能制造创新研究院, 沈阳 110169||中国科学院大学, 北京 100049
  • 2. 中国科学院 沈阳自动化研究所, 沈阳 110000||中国科学院 机器人与智能制造创新研究院, 沈阳 110169
  • 折叠

摘要

Abstract

In view of the current agricultural machinery service network resources distribution and the problem of spare parts waste of resources,this paper proposed a prediction method of spare parts allocation of agricultural machinery service based on improved LightGBM according to the operation of agricultural machinery in the service network.This pa-per first determines the agricultural machinery operation environment information,service information,and multiple characteristics of spare parts information in three dimensions,then based on PSO-LightGBM agricultural machinery spare parts service resources prediction model is established.To evaluate the effectiveness,we also compared our method with other machine learning methods such as(Logistic Regression,Random Forest,and XGBoost).LightGBM model has a better effect with RMSE value of 27.67.Moreover,The accuracy of LightGBM spare parts prediction is further im-proved by PSO super parameter tuning,and the RMSE value is 24.74,which can more accurately predict the spare parts demand of agricultural machinery service resources in service outlets.

关键词

农机服务/备件预测/LightGBM/机器学习

Key words

agricultur machinery service/spare parts demand forecast/lightGBM/machine learning

分类

农业科技

引用本文复制引用

温彦博,王卓,白晓平..基于改进LightGBM的农机服务备件配置预测方法[J].农机化研究,2024,46(4):7-14,8.

基金项目

国家重点研发计划项目(2020YFB1709603-1) (2020YFB1709603-1)

农机化研究

OA北大核心

1003-188X

访问量0
|
下载量0
段落导航相关论文