基于YOLOv5算法的无人机伤员搜救系统设计OA
无人机伤员搜救系统是一种利用无人机在灾难现场搜索,并基于高清相机图像定位伤员的技术,该方法可以高效搜索受伤或者昏迷的伤员,提高搜救效率、减少救援人员的风险.该文介绍一种基于YOLOv5 目标检测算法的无人机伤员搜救系统,该系统使用卷积神经网络模型,能够实现对伤员的目标检测,并使用PyQt5 框架设计图形用户界面,将关键图像和文本信息显示在屏幕上,便于搜救人员开展工作.介绍四旋翼无人机的硬件组成、YOLO算法的原理、神经网络模型训练和GUI软件开发的过程,并模拟伤员拍摄照片进行识别实验,验证该系统的有效性和可行性,为无人机伤员搜救技术的发展提供一种新的思路和方法.
The unmanned aerial vehicle(UAV)casualty search and rescue system is a technology that utilizes drones to search at disaster sites and locate injured individuals based on high-definition camera images.This method can efficiently search for injured or unconscious individuals,improve search and rescue efficiency,and reduce the risk of rescue personnel.This article introduces a unmanned aerial vehicle(UAV)casualty search and rescue system based on the YOLOv5 object detection algorithm.The system uses a convolutional neural network(CNN)model to achieve target detection of casualties,and uses the PyQt5 framework to design a graphical user interface that displays key images and text information on the screen,making it easy for search and rescue personnel to carry out their work.This paper introduces the hardware composition of four-rotor UAV,the principle of YOLO algorithm,the training of neural network model and the process of GUI software development,and simulates the photos of the wounded to carry out recognition experiments to verify the effectiveness and feasibility of the system,which provides a new idea and method for the development of UAV casualty search and rescue technology.
廖骏明;徐逸晖;郑潞;郑善豪;卓伟豪;廖绍成
中国矿业大学,江苏 徐州 221116
无人机目标检测PyQt5YOLOv5算法伤员搜救
UAVtarget detectionPyQt5YOLOv5 algorithmcasualty search and rescue
《科技创新与应用》 2024 (001)
156-159 / 4
中国矿业大学国家级大学生创新创业训练计划(202210290103Z)
评论