| 注册
首页|期刊导航|土木与环境工程学报(中英文)|机器学习方法在盾构隧道工程中的应用研究现状与展望

机器学习方法在盾构隧道工程中的应用研究现状与展望

陈湘生 曾仕琪 韩文龙 苏栋

土木与环境工程学报(中英文)2024,Vol.46Issue(1):1-13,13.
土木与环境工程学报(中英文)2024,Vol.46Issue(1):1-13,13.DOI:10.11835/j.issn.2096-6717.2022.069

机器学习方法在盾构隧道工程中的应用研究现状与展望

Review and prospect of machine learning method in shield tunnel construction

陈湘生 1曾仕琪 2韩文龙 2苏栋1

作者信息

  • 1. 深圳大学土木与交通工程学院,深圳 518060||深圳大学滨海城市韧性基础设施教育部重点实验室,深圳 518060||深圳大学深圳市地铁地下车站绿色高效智能建造重点实验室,深圳 518060
  • 2. 深圳大学土木与交通工程学院,深圳 518060
  • 折叠

摘要

Abstract

With the development of engineering information level and the monitoring technology in the field of shield tunnel,the recorded engineering data contains the internal information of tunneling equipment and its interaction with the external stratum.Machine learning has more application space than traditional modeling statistical analysis methods because of its strong data analysis ability and no requirement on prior theoretical formula and expert knowledge.Improving the efficiency and safety level of shield tunnel construction is helpful to deeply mine the collected information and data and analyze their internal relationship through machine learning method.This paper briefly describes the basic principle of machine learning methods,summarizes and analyzes its application in shield tunnel engineering.In particular,the progress on the equipment status analysis,shield performance prediction,geological parameters analysis,prediction of ground surface deformation and examination of tunnel hazard based on the machine learning method are summarized.Finally,the key problems to be solved so as to realize the intelligent shield tunnel engineering are analyzed and forecasted.

关键词

盾构隧道/机器学习/隧道施工/大数据/人工智能

Key words

shield tunnel/machine learning/tunnel construction/big data/artificial intelligence

分类

交通运输

引用本文复制引用

陈湘生,曾仕琪,韩文龙,苏栋..机器学习方法在盾构隧道工程中的应用研究现状与展望[J].土木与环境工程学报(中英文),2024,46(1):1-13,13.

基金项目

深圳市自然科学基金(JCYJ20210324094607020) (JCYJ20210324094607020)

国家自然科学基金(51938008) (51938008)

广东省重点领域研发计划(2019B111105001)Natural Science Foundation of Shenzhen(No.JCYJ20210324094607020) (2019B111105001)

National Natural Science Foundation of China(No.51938008) (No.51938008)

Key Research and Development Project of Guangdong Province(No.2019B111105001) (No.2019B111105001)

土木与环境工程学报(中英文)

OACSTPCD

2096-6717

访问量0
|
下载量0
段落导航相关论文