| 注册
首页|期刊导航|计算机工程与应用|基于多尺度注意力特征融合的场景文本检测

基于多尺度注意力特征融合的场景文本检测

厍向阳 刘哲 董立红

计算机工程与应用2024,Vol.60Issue(1):198-206,9.
计算机工程与应用2024,Vol.60Issue(1):198-206,9.DOI:10.3778/j.issn.1002-8331.2207-0410

基于多尺度注意力特征融合的场景文本检测

Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion

厍向阳 1刘哲 1董立红1

作者信息

  • 1. 西安科技大学 计算机科学与技术学院,西安 710054
  • 折叠

摘要

Abstract

Aiming at the low detection accuracy of small scale text and long text in text detection,a scene text detection algorithm based on multi-scale attention feature fusion is proposed.This method takes Mask R-CNN as the baseline model,selects Swin_Transformer as the backbone network to extract the bottom features.In the feature pyramid networks(FPN),the multi-scale attention heat maps are fused with the bottom features through lateral connection,so that different layers of the detector focus on specific scale targets,and the vertical feature sharing in FPN structure is realized by using the relationship between the adjacent attentional heat maps,avoiding the inconsistency of gradient calculation among different layers.Experimental results demonstrate that the accuracy,recall and F-value of this method reach 88.3%,83.07%and 85.61%respectively on ICDAR2015 data set,and it performs well than the existing methods on CTW1500 and Total-Text curved text data set.

关键词

场景文本检测/Mask R-CNN/Swin Transformer/注意力机制/多尺度特征融合

Key words

scene text detection/Mask R-CNN/Swin Transformer/attention mechanism/multi-scale feature fusion

分类

信息技术与安全科学

引用本文复制引用

厍向阳,刘哲,董立红..基于多尺度注意力特征融合的场景文本检测[J].计算机工程与应用,2024,60(1):198-206,9.

基金项目

陕西省自然科学基础研究(2019JLM-11) (2019JLM-11)

陕西省科技计划(2021JQ-576) (2021JQ-576)

陕西省教育厅项目(19JK0526). (19JK0526)

计算机工程与应用

OA北大核心CSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文