时间感知的双塔型自注意力序列推荐模型OACSTPCD
Time-Aware Sequential Recommendation Model Based on Dual-Tower Self-Attention
用户的偏好具有聚合性和漂移性.现有推荐算法在序列建模框架中融合了交互时间相关性的建模,取得了很大的性能改善,但它们在建模时仅考虑了交互的时间间隔,使得它们在捕捉用户偏好的时间动态方面存在局限性.首先,提出了一种新的时间感知的位置嵌入方法,将时间信息与位置嵌入相结合,帮助模型学习时间层面的项目相关性.随后,在时间感知位置嵌入基础上,提出了时间感知的双塔自注意力序列推荐模型(TiDSA).TiDSA包含项目级和特征级的自注意力模块,分别从项目和特征两个角度对用户偏好随时间变化的过程进行分析,实现了对时间、项目和特征的统一建模,并且在特征级自注意力模块,设计了多维度的自注意力权重计算方式,从特征维度、项目维度和项目与特征交叉维度充分学习特征之间的相关性.最后,TiDSA将项目级与特征级的信息相融合得到最终的用户偏好表示,并根据该表示为用户提供可靠的推荐结果.四个真实推荐数据集的实验结果表明,TiDSA的性能优于许多先进的基线模型.
Users'preferences are migratory and aggregated.Although recommenders have been greatly improved by modeling the timestamps of interactions within a sequential modeling framework,they only consider the time interval of interactions when modeling,making them limited in capturing the temporal dynamics of user prefer-ences.For this reason,this paper proposes a novel time-aware positional embedding that fuses temporal information into the positional embedding to help the network learn item correlations at the temporal level.Then,based on the time-aware positional embedding,this paper proposes a time-aware sequential recommendation model based on dual-tower self-attention(TiDSA).TiDSA includes item-level and feature level self-attention blocks,which analyzes the process of user preference change over time from the perspective of items and features respectively,and achieves the unified modeling of time,items and features.In addition,in the feature-level self-attention block,this paper calculates the self-attention weights from three dimensions,namely,feature-feature,item-item and item-feature,to fully capture the correlation between different features.Finally,the model fuses the item-level and feature-level information to obtain the final user preference representation and provides reliable recommendation results for users.Experimental results on four real-world datasets show that TiDSA outperforms various state-of-the-art models.
余文婷;吴云
贵州大学 公共大数据国家重点实验室,贵阳 550025||贵州大学 计算机科学与技术学院,贵阳 550025
计算机与自动化
时间感知序列推荐位置嵌入特征级自注意力机制双塔自注意力网络
time-aware sequential recommendationpositional embeddingfeature-level self-attentiondual-tower self-attention
《计算机科学与探索》 2024 (001)
175-188 / 14
国家自然科学基金(62266011);贵州省科技计划项目(黔科合基础ZK[2022]一般119).This work was supported by the National Natural Science Foundation of China(62266011),and the Science and Technology Founda-tion of Guizhou Province(ZK[2022]119).
评论