一种风向监督双流神经网络OACSTPCD
A Dual-Stream Neural Network Supervised by Wind Direction for One-Dimensional Burgers Equation
针对一维Burgers方程下单一建模方式难以充分考虑不同阶段风向对系数的影响比重,无法有效获得各节点间的关联信息的问题,本文提出了一种风向监督双流神经网络分别预测上下风向的有限差分系数.同时设计了一种风向判断模块,实现了对预测得到有限差分系数的权重融合.通过风向监督双流神经网络,并结合先验知识对学得的系数分配一定的权重,以突出上下风向对预测结果的不同影响,可以有效实现对不同风向上的点分别进行预测,使得空间结构特征信息挖掘更加充分,从而提高差分系数预测的精度.在比传统数值求解方法网格分辨率粗4~8倍的同时,提高了谷歌团队工作的精度,以此提高了计算的速度.
Aiming at the problem that the single modeling method under the one-dimensional Burgers equation is difficult to fully consider the influence of wind direction on the coefficient at different stages,and cannot effectively obtain the relevant information between nodes.A wind direction supervised two-stream neural network is proposed to predict the finite difference coefficients of up and down wind direc-tions separately.At the same time,a wind direction judgment module is designed to realize the weight fusion of the predicted finite difference coefficients.The two-stream neural network is supervised by the wind direction,combined with the prior knowledge to assign a certain weight to the learned coefficients,so as to highlight the different influences of the upper and lower wind directions on the prediction re-sults,and can effectively realize the prediction of points in different wind directions,making the spatial structure characteristics Information mining is more sufficient,thereby improving the accuracy of differ-ential coefficient prediction.While the grid resolution is 4 to 8 times thicker than the traditional numeri-cal solution method,it improves the accuracy of the work of the Google team,thereby increasing the calculation speed.
耿浩冉;田浩;王成龙;宋宁;魏志强;冯毅雄;郭景任;聂婕
中国海洋大学信息科学与工程学部,山东 青岛 266100中国海洋大学数学科学学院,山东 青岛 266100浙江大学机械工程学院,浙江 杭州 310058深圳中广核工程设计有限公司,广东 深圳 519000
数学
风向监督双流神经网络Burgers方程机器学习迎风格式数据驱动离散化
wind direction supervised two-stream neural networkburgers equationmachine learn-ingwind directiondata-driven discretization
《中国海洋大学学报(自然科学版)》 2024 (002)
134-141 / 8
国家重点研究发展计划项目(2020YFB1711700);中央高校基本科研业务费专项资金项目(202042008);国家自然科学基金项目(62172376,62072418);山东省重大科技创新工程项目(2019JZZY020705)资助Supported by the National Key Research and Development Program of China(2020YFB1711700);the Fundamental Research Funds for the Central Universities(202042008);the National Natural Science Foundation of China(62172376,62072418);the Major Scientific and Technological Innovation Project of Shandong(2019JZZY020705)
评论