|国家科技期刊平台
首页|期刊导航|皮革科学与工程|基于改进YOLOv5的皮革抓取点识别及定位

基于改进YOLOv5的皮革抓取点识别及定位OACSTPCD

Grab Point Identification and Localization of Leather based on Improved YOLOv5

中文摘要英文摘要

为实现机器人对皮革抓取点的精确定位,文章通过改进YOLOv5算法,引入coordinate attention注意力机制到Backbone层中,用Focal-EIOU Loss对CIOU Loss进行替换来设置不同梯度,从而实现了对皮革抓取点快速精准的识别和定位.利用目标边界框回归公式获取皮革抓点的定位坐标,经过坐标系转换获得待抓取点的三维坐标,采用Intel RealSense D435i深度相机对皮革抓取点进行定位实验.实验结果表明:与Faster R-CNN算法和原始YOLOv5算法对比,识别实验中改进YOLOv5算法的准确率分别提升了 6.9%和2.63%,召回率分别提升了8.39%和2.63%,mAP分别提升了 8.13%和0.21%;定位实验中改进YOLOv5算法的误差平均值分别下降了0.033 m和0.007 m,误差比平均值分别下降了 2.233%和0.476%.

In order to achieve precise localization of leather grasping points by robots,this study proposed an improved approach based on the YOLOv5 algorithm.The methodology involved the integration of the coordinate attention mechanism into the Backbone layer and the replacement of the CIOU Loss with the Focal-EIOU Loss to enable different gradients and enhance the rapid and accurate recognition and localization of leather grasping points.The positioning coordinates of the leather grasping points were obtained by using the target bounding box regression formula,followed by the coordinate system conversion to obtain the three-dimensional coordinates of the target grasping points.The experimental positioning of leather grasping points was conducted by using the Intel RealSense D435i depth camera.Experimental results demonstrate the significant improvements over the Faster R-CNN algorithm and the original YOLOv5 algorithm.The improved YOLOv5 algorithm exhibited an accuracy enhancement of 6.9%and 2.63%,a recall improvement of 8.39%and 2.63%,and an mAP improvement of 8.13%and 0.21%in recognition experiments,respectively.Similarly,in the positioning experiments,the improved YOLOv5 algorithm demonstrated a decrease in average error values of 0.033m and 0.007m,and a decrease in error ratio average values of 2.233%and 0.476%.

金光;任工昌;桓源;洪杰

陕西科技大学机电工程学院,陕西西安 710021

计算机与自动化

皮革抓取点定位机器视觉YOLOv5CA注意力机制

leathergrab point positioningmachine visionYOLOv5coordinate attention

《皮革科学与工程》 2024 (001)

32-40 / 9

陕西省重点研发计划资助项目(2022GY-250);西安市科技计划项目(23ZDCYJSGG0016-2022)

10.19677/j.issn.1004-7964.2024.01.005

评论