拓扑空间中的理想收敛OACSTPCD
Ideal Convergence in Topological Space
用理想收敛结构解决定向拓扑的刻画问题,给出理想S极限和理想广义S极限可拓扑化的充要条件.结果表明:T0拓扑空间上的定向拓扑、理想S极限拓扑和理想广义S极限拓扑相同;定向空间中的理想S收敛是拓扑的当且仅当其为c-空间;定向空间中理想广义S收敛是拓扑的当且仅当其为局部强紧空间.
We used an ideal convergence structure to solve the characterization problem of directed topology,and provided necessary and sufficient conditions for the topological transformation of ideal S limits and ideal generalized S limits.The results show that the directed topology,the ideal S limit topology and the ideal generalized S limit topology are the same in T0 topological spaces.The ideal S convergence in a directed space is topological if and only if it is a c-space.The ideal generalized S convergence in a directed space is topological if and only if it is a locally strongly compact space.
王武;张舜
天津理工大学中环信息学院基础部,天津 300380天津仁爱学院数学教学部,天津 301636
数学
理想S极限理想广义S极限c-空间局部强紧空间定向拓扑
ideal S limitideal generalized S limitc-spacelocally strongly compact spacedirected topology
《吉林大学学报(理学版)》 2024 (001)
13-19 / 7
天津市教委科研计划项目(批准号:2023KJ281)和高等学校大学数学教学研究与发展中心教改项目(批准号:CMC20210115).
评论