|国家科技期刊平台
首页|期刊导航|吉林大学学报(理学版)|一类带次线性中立项和分布时滞的三阶阻尼微分方程的振动性

一类带次线性中立项和分布时滞的三阶阻尼微分方程的振动性OACSTPCD

Oscillation of a Class of Third-Order Damped Differential Equations with Sublinear Neutral Terms and Distributed Delays

中文摘要英文摘要

利用处理次线性中立项的技术、广义Riccati变换和积分平均技巧,首先,给出一种估计Riccati变换不等式的解析方法;其次,考虑一类具有次线性中立项和分布时滞的三阶阻尼微分方程,给出解振动或收敛于零的一些充分条件;最后,通过实例验证所得结果.

By using the techniques of dealing with sublinear neutral terms,generalized Riccati transformation and integral averaging techniques,firstly,the author gave an analytical method for estimating Riccati transformation inequality.Secondly,the author considered a class of third-order damped differential equations with sublinear neutral terms and distributed delays,and obtained some sufficient conditions for the solution to oscillate or converge to zero.Finally,the results were verified by some examples.

林文贤

韩山师范学院数学与统计学院,广东潮州 521041

数学

振动性分布时滞次线性中立项

oscillationdistributed delaysublinear neutral term

《吉林大学学报(理学版)》 2024 (001)

一类流体与粒子相互作用模型的解的适定性和粘性消失问题

55-62 / 8

国家自然科学基金(批准号:12026253)、广东省普通高校特色创新类项目(批准号:2023KTSCX083)、广东省一流课程《数学分析》建设项目(批准号:Z21011)和2022年度韩山师范学院质量工程建设项目(批准号:E22033).

10.13413/j.cnki.jdxblxb.2023226

评论