| 注册
首页|期刊导航|可再生能源|计及分布式能源时序不确定性的短期负荷预测技术

计及分布式能源时序不确定性的短期负荷预测技术

杨小龙 姚陶 孙辰军 魏新杰 张华铭 孙毅

可再生能源2024,Vol.42Issue(1):96-103,8.
可再生能源2024,Vol.42Issue(1):96-103,8.

计及分布式能源时序不确定性的短期负荷预测技术

Short-term load forecasting technology with distributed energy timing uncertainty

杨小龙 1姚陶 1孙辰军 1魏新杰 2张华铭 3孙毅4

作者信息

  • 1. 国网河北省电力有限公司信息通信分公司,河北石家庄 050000
  • 2. 国网河北省电力有限公司,河北石家庄 050021
  • 3. 北京清软创新科技股份有限公司,北京 100080
  • 4. 华北电力大学电气与电子工程学院,北京 102206
  • 折叠

摘要

Abstract

In recent years,with the rapid growth of the scale of distributed photovoltaic deployment in cities and towns,the impact of random fluctuation characteristics of its output on urban load is also increasing.The traditional method is difficult to accurately predict the complex load fluctuation after large-scale deployment of distributed photovoltaic system,which is not conducive to the safe and stable operation of power grid.To solve these problems,this paper proposes a short-term load forecasting method considering distributed PV.Since the net load including distributed PV is the difference between the actual consumption load of the user side and the PV output,this paper first adopts the big data mining technology to analyze the characteristics of PV output and the user-side load as well as the correlation between the two and their respective influencing factors before constructing input data,and selects the influential factors with high correlation as the input feature set of the net load prediction model.Secondly,the LSTM neural network prediction model integrating self-attention mechanism is constructed to deeply explore the characteristics of load sequence.The grey Wolf algorithm is used to optimize the parameters of the prediction model and determine the model with the best prediction effect.Finally,an example simulation shows that the proposed method can effectively improve the prediction accuracy of net load with distributed PV.

关键词

分布式光伏/相关性分析/自注意力机制/LSTM/灰狼优化算法/负荷预测

Key words

distributed photovoltaic/correlation analysis/self-Attention mechanism/LSTM/grey wolf optimization algorithm/load forecasting

分类

能源与动力

引用本文复制引用

杨小龙,姚陶,孙辰军,魏新杰,张华铭,孙毅..计及分布式能源时序不确定性的短期负荷预测技术[J].可再生能源,2024,42(1):96-103,8.

基金项目

国家电网有限公司科技项目(5204XA22000D). (5204XA22000D)

可再生能源

OACSTPCD

1671-5292

访问量0
|
下载量0
段落导航相关论文