基于UI-LSTM模型的短时降水预测研究OA
Research on Short-term Precipitation Prediction Based on UI-LSTM Model
降水临近预报是为了预测未来短时间的降雨量.现有大多数基于循环神经网络(Recurrent Neural Network,RNN)的降水预报模型,采用单一的卷积核对输入和隐藏状态的特征进行提取存在局部性,不能捕获雷达回波图中复杂的物理变化,且未有效提取时空相关性和对强降雨区域的精准预测.针对现有模型存在的问题,提出了 UI-LSTM模型用于降水临近预报,能够有效地提取雷达回波序列的时空相关性,采用了 U形结构,同时使用跳过连接进行特征拼接,学习到整个雷达回波图的上下文语义信息,且将浅层和深层信息进行特征融合.加入了 Inception结构来代替 ConvLSTM细胞结构中输入到输入和状态到状态的卷积,通过不同大小的卷积核,有效提取输入,隐藏状态的特征.在公开数据集(CIKM AnalytiCup 2017)进行实验并与其他模型进行对比实验.实验结果表明,UI-LSTM模型在 HSS、CSI、MAE和 SSIM指标整体上要远高于其他对比模型,且提高强降水天气预测的准确率.
Precipitation nowcasting is to predict short-term rainfall in the future.Most existing precipitation forecasting models based on Recurrent Neural Network(RNN)use a single convolution kernel to extract the features of the input and hidden states,which is limited by locality.Thus these models cannot capture complex physical changes in radar echo images,and cannot effectively extract spatiotemporal correlations and make accurate forecasts for heavy rainfall regions.In view of the problems in the existing models,the UI-LSTM model is proposed for precipitation nowcasting,which can effectively extract the spatiotemporal correlation of the radar echo sequence.The proposed model adopts a U-shaped structure and uses skip connections for feature stitching to learn the contextual semantic information of the entire radar echo map and fuse features from the shallow and deep information.In addition,the Inception structure is added to replace the convolution in the ConvLSTM cell structure,and features of the input and the hidden state are effectively extracted through convolution kernels of different sizes.The experimental results show that the UI-LSTM model performs much better than the existing model in terms of HSS,CSI,MAE and SSIM,and the accuracy of heavy precipitation prediction is improved.
包顺;秦华旺;戴跃伟;陈浩然;尹传豪
南京信息工程大学电子与信息工程学院,江苏南京 210044南京信息工程大学自动化学院,江苏南京 210044
计算机与自动化
降水临近预报循环神经网络特征融合UI-LSTMInception
precipitation nowcastingRNNfeature fusionUI-LSTMInception
《无线电工程》 2024 (001)
47-54 / 8
评论