意图驱动光网络的冲突解决方法OA
Conflict resolution method of intention-driven optical network
在意图驱动光网络中,由于同时下发的意图数量突然增多或底层物理资源的限制,部分用户的意图请求无法连接成功,导致意图冲突.提出一种基于强化学习的意图驱动光网络的冲突解决方法,根据强化学习输出的用户意图回退策略,更新用户意图对应的网络需求指标,在保障用户意图都能够成功连接的前提下使当前网络中的平均服务质量(QoS)值最大.实验结果表明,提出的方法可以有效提升当前网络环境中用户的平均QoS值,降低网络阻塞率.
In intent-driven optical networks,due to the sudden increase in the number of intents sent at the same time or the limi-tation of underlying physical resources,some users'intent requests cannot be successfully connected,resulting in intent conflicts.In this paper,an intent-driven optical network conflict resolution method based on reinforcement learning is proposed.According to the user intention rollback policy output by reinforcement learning,the network demand index corresponding to the user inten-tion is updated,and the average quality of service(QoS)value in the current network is maximized on the premise of ensuring that the user intention can be successfully connected.The experimental results show that the proposed method can effectively im-prove the average QoS value of users in the current network environment and reduce the network blocking rate.
王寒凝;王江;齐钰;滕云;杨辉
61932 部队,北京 100000北京邮电大学 信息光子学与光通信国家重点实验室,北京 100876
电子信息工程
意图驱动光网络意图冲突强化学习用户协商平均服务质量
intention-driven optical networkintention-conflictreinforcement learninguser negotiationaverage quality of ser-vice
《光通信技术》 2024 (001)
74-79 / 6
国家自然科学基金面上项目(62271075)资助.
评论