基于子空间学习的快速自适应局部比值和判别分析OACSTPCD
Fast adaptive local ratio sum discriminant analysis based on subspace learning
降维是处理高维数据的一项关键技术,其中线性判别分析及其变体算法均为有效的监督算法.然而大多数判别分析算法存在以下缺点:a)无法选择更具判别性的特征;b)忽略原始空间中噪声和冗余特征的干扰;c)更新邻接图的计算复杂度高.为了克服以上缺点,提出了基于子空间学习的快速自适应局部比值和判别分析算法.首先,提出了统一比值和准则及子空间学习的模型,以在子空间中探索数据的潜在结构,选择出更具判别信息的特征,避免受原始空间中噪声的影响;其次,采用基于锚点的策略构造邻接图来表征数据的局部结构,加速邻接图学习;然后,引入香农熵正则化,以避免平凡解;最后,在多个数据集上进行了对比实验,验证了算法的有效性-.
Dimensionality reduction is a key technique for processing high-dimensional data,and linear discriminant analysis and its variant algorithms are effective supervised algorithms.However,most discriminant analysis algorithms have the follow-ing disadvantages:a)It cannot select more discriminative features;b)It ignores the interference of noise and redundant fea-tures in the original space;c)The computational complexity of updating the adjacency graph is high.In order to overcome these shortcomings,this paper proposed a fast adaptive local ratio sum discriminant analysis algorithm based on subspace learning.Firstly,this paper proposed a model that unified the ratio sum criterion and subspace learning to explore the potential structure of the data in the subspace,select features with more discriminative information,and avoid being affected by noise in the original space.Secondly,it used an anchor-based strategies to construct an adjacency graph to represent the local structure of the data to accelerate the learning of the adjacency graph.Finally,it introduced Shannon entropy to avoid trivial solutions,and verified the effectiveness of the algorithm by comparison experiments on multiple data sets.
曹传杰;王靖;赵伟豪;周科艺;杨晓君
广东工业大学信息工程学院,广州 510006广东工业大学集成电路学院,广州 510006
计算机与自动化
降维线性判别分析子空间学习比值和
dimensionality reductionlinear discriminant analysissubspace learningratio sum
《计算机应用研究》 2024 (001)
108-115 / 8
广东省面上自然基金资助项目(2021A1515011141);国防重点实验室开放基金资助项目;国家自然基金青年资助项目(61904041)
评论