基于改进YOLOv5s的森林烟火检测算法研究OA
该文提出一种基于改进YOLOv5s的森林烟火检测算法,通过引入GSConv轻量化卷积和消除网格敏感度的策略,在原始YOLOv5s模型的基础上优化.在烟火数据集上进行广泛的实验,同时将改进的算法部署到无人机上进行真机测试.实验结果表明,经过改进的模型在森林烟火检测任务中取得显著的性能提升.模型的平均精度达到 90.65%,且检测耗时仅为 4.1 ms,满足烟火检测的高精度和实时性要求.这一研究为森林烟火检测算法的实际应用提供有力支持,具有重要的实际意义和应用价值.
This paper proposes an improved forest fire detection algorithm based on YOLOv5s.The algorithm enhances the original YOLOv5s model by introducing the GSConv lightweight convolution and a strategy to eliminate grid sensitivity.Extensive experiments are conducted on a forest fire dataset,and the proposed algorithm is successfully deployed on a drone for real-world testing.The experimental results demonstrate significant performance improvements achieved by the enhanced model in forest fire detection.The average accuracy of the model is 90.65%,and the detection time is only 4.1 ms,which meets the high precision and real-time requirements of pyrotechnic detection.This study provides a strong support for the practical application of forest fire detection algorithm,and has important practical significance and application value.
李虹;纪任鑫;陈军鹏;耿荣妹;蔡骁;张艳迪
中国消防救援学院,北京 100000航天图景科技有限公司,北京 100000
林学
森林烟火检测YOLOv5sGSConv轻量化卷积消除网格敏感度实时性
forest fire detectionYOLOv5sGSConv lightweight convolutionelimination of grid sensitivityreal-time
《科技创新与应用》 2024 (005)
7-11 / 5
北京市科技新星计划(Z191100001119111,Z201100006820107)
评论